首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The main goal of this contribution consists in the development of a remodelling framework for orthotropic continua whereby the underlying symmetry group is incorporated via two fibre families. Special emphasis is placed on the modelling of biological tissues at finite deformations. Besides the incorporation of a referential mass source, anisotropic growth is addressed by means of a multiplicative decomposition of the overall deformation gradient into an elastic and a growth distortion. Projected quantities of a configurational growth stress tensor are advocated as driving forces for time-dependent saturation–type evolution of the principal values of the growth distortion. Moreover, the reorientation of both fibre families, which directly affects the strain energy as well as the growth distortion itself, is guided by analyzing critical energy points. In particular, a time-dependent formulation is developed which aligns the fibre directions according to the principal stretch directions. Finally, the proposed framework is embedded into a finite element context so that representative numerical examples, examining growth and resorption in volume and density together with fibre reorientation, close this study.  相似文献   

2.
3.
Current diagnosis of bone loss and osteoporosis is based on the measurement of the bone mineral density (BMD) or the apparent mass density. Unfortunately, in most clinical ultrasound densitometers: 1) measurements are often performed in a single anatomical direction, 2) only the first wave arriving to the ultrasound probe is characterized, and 3) the analysis of bone status is based on empirical relationships between measurable quantities such as speed of sound (SOS) and broadband ultrasound attenuation (BUA) and the density of the porous medium. However, the existence of a second wave in cancellous bone has been reported, which is an unequivocal signature of poroelastic media, as predicted by Biot’s poroelastic wave propagation theory. In this paper, the governing equations for wave motion in the linear theory of anisotropic poroelastic materials are developed and extended to include the dependence of the constitutive relations upon fabric—a quantitative stereological measure of the degree of structural anisotropy in the pore architecture of a porous medium. This fabric-dependent anisotropic poroelastic approach is a theoretical framework to describe the microarchitectural-dependent relationship between measurable wave properties and the elastic constants of trabecular bone, and thus represents an alternative for bone quality assessment beyond BMD alone.  相似文献   

4.
5.
This contribution presents a novel constitutive model in order to simulate an orthotropic rate-dependent behaviour of the passive myocardium at finite strains. The motivation for the consideration of orthotropic viscous effects in a constitutive level lies in the disagreement between theoretical predictions and experimentally observed results. In view of experimental observations, the material is deemed as nearly incompressible, hyperelastic, orthotropic and viscous. The viscoelastic response is formulated by means of a rheological model consisting of a spring coupled with a Maxwell element in parallel. In this context, the isochoric free energy function is decomposed into elastic equilibrium and viscous non-equilibrium parts. The baseline elastic response is modelled by the orthotropic model of Holzapfel and Ogden [Holzapfel GA, Ogden RW. 2009. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans Roy Soc A Math Phys Eng Sci. 367:3445–3475]. The essential aspect of the proposed model is the account of distinct relaxation mechanisms for each orientation direction. To this end, the non-equilibrium response of the free energy function is constructed in the logarithmic strain space and additively decomposed into three anisotropic parts, denoting fibre, sheet and normal directions each accompanied by a distinct dissipation potential governing the evolution of viscous strains associated with each orientation direction. The evolution equations governing the viscous flow have an energy-activated nonlinear form. The energy storage in the Maxwell branches has a quadratic form leading to a linear stress–strain response in the logarithmic strain space. On the numerical side, the algorithmic aspects suitable for the implicit finite element method are discussed in a Lagrangian setting. The model shows excellent agreement compared to experimental data obtained from the literature. Furthermore, the finite element simulations of a heart cycle carried out with the proposed model show significant deviations in the strain field relative to the elastic solution.  相似文献   

6.
Model for the retino-tectal projection   总被引:2,自引:0,他引:2  
A model for the retino-tectal projection is proposed which assumes that axonal growth proceeds predominantly in the direction of maximal slope of a guiding substance (or, more generally, of a system parameter subsuming the effect of several substances). The spatial distribution of this parameter, in turn, results from the interaction of components of retinal axons (which are graded with respect to position of origin in the retina) and tectal components. One or two gradients in each dimension of retina and tectum suffice. Conditions for the generation of a reliable projection on this basis are relatively simple and consistent with conventional enzyme and receptor kinetics. Adhesive forces could but need not be involved in the guiding mechanism. The slope of guiding substances that interfere with an intracellular pattern-forming mechanism within the growth cone may determine the polarity of activation and thus the direction of growth. Generation of primary projections and some features of regulation such as independence of projections on neural pathways, and observations on the innervation of rotated pieces of tectum, can be explained on the basis of the model. The model can be extended by introducing additional production of guiding substance depending on the density, and duration of presence, of fibre terminals in the course of innervation. This simple mechanism would suffice for observed effects of compression and expansion of the map following ablation of retinal and tectal tissue, respectively. It may but need not be involved in the primary projection, too.  相似文献   

7.
Uniaxial tensile and relaxation tests were carried out on annulus fibrosus samples carved out in the circumferential direction. Images were shot perpendicularly to the loading direction. Digital image correlation techniques accurately measured the evolution of full displacement fields in both transverse directions: plane of fibres and plane of lamellae. In the fibre plane, strains were governed by the reorientation of fibres along the loading direction. This implies strong transverse shrinkage with quasi-linear behaviour. Conversely, a wide range of behaviour was observed in the lamella plane: from shrinkage to swelling. Strong nonlinear evolutions were generally obtained. The strain field in the lamella plane generally presented a central strip section with more pronounced swelling. Our physical interpretation relies on the porous nature of annulus tissue and its anisotropic stiffness. Indeed, the liquid over-pressure generated inside the sample by the strong shrinkage in the fibre plane discharges in the perpendicular direction since rigidity is lower in the lamella plane. Regarding the strain field measured in the lamella plane, this interpretation agrees with (a) symmetric strain distribution with respect to the longitudinal axis of samples, (b) the reversal in behaviour from shrinkage to swelling and (c) the decrease in strain during relaxation tests associated with outward flows. The variety of transverse behaviours observed experimentally could result from uncertainties regarding the initial reference state of tissue samples. Since the mechanical behaviour is highly nonlinear, experimental results underline that a slight uncertainty concerning the pre-stress applied to samples can lead to wide variability in the mechanical properties identified.  相似文献   

8.
9.
Skeletal muscle tissues have complex geometries. In addition, the complex fibre orientation arrangement makes it quite difficult to create an accurate finite element muscle model. There are many possible ways to specify the complex fibre orientations in a finite element model, for example defining a local element coordinate system. In this paper, an alternative method using ABAQUS, which is combination of the finite element method and the non-uniform rational B-spline solid representation, is proposed to calculate the initial fibre orientations. The initial direction of each muscle fibre is specified as the tangent direction of the NURBS curve which the fibre lies on, and the directions of the deformed fibres are calculated from the initial fibre directions, the deformation gradients and the fibre stretch ratios. Several examples are presented to demonstrate the ability of the proposed method. Results show that the proposed method is able to characterise both the muscle complex fibre orientation arrangement and its complex mechanical response.  相似文献   

10.
Skeletal muscle tissues have complex geometries. In addition, the complex fibre orientation arrangement makes it quite difficult to create an accurate finite element muscle model. There are many possible ways to specify the complex fibre orientations in a finite element model, for example defining a local element coordinate system. In this paper, an alternative method using ABAQUS, which is combination of the finite element method and the non-uniform rational B-spline solid representation, is proposed to calculate the initial fibre orientations. The initial direction of each muscle fibre is specified as the tangent direction of the NURBS curve which the fibre lies on, and the directions of the deformed fibres are calculated from the initial fibre directions, the deformation gradients and the fibre stretch ratios. Several examples are presented to demonstrate the ability of the proposed method. Results show that the proposed method is able to characterise both the muscle complex fibre orientation arrangement and its complex mechanical response.  相似文献   

11.
12.
Several applications in tissue engineering require transplantation of cells embedded in appropriate biomaterial scaffolds. Such structures may consist of 3D non-woven fibrous materials whereas little is known about the impact of mesh size, pore architecture and fibre morphology on cellular behavior. In this study, we have developed polyvinylidene fluoride (PVDF) non-woven scaffolds with round, trilobal, or snowflake fibre cross section and different fibre crimp patterns (10, 16, or 28 needles per inch). Human mesenchymal stromal cells (MSCs) from adipose tissue were seeded in parallel on these scaffolds and their growth was compared. Initial cell adhesion during the seeding procedure was higher on non-wovens with round fibres than on those with snowflake or trilobal cross sections. All PVDF non-woven fabrics facilitated cell growth over a time course of 15 days. Interestingly, proliferation was significantly higher on non-wovens with round or trilobal fibres as compared to those with snowflake profile. Furthermore, proliferation increased in a wider, less dense network. Scanning electron microscopy (SEM) revealed that the MSCs aligned along the fibres and formed cellular layers spanning over the pores. 3D PVDF non-woven scaffolds support growth of MSCs, however fibre morphology and mesh size are relevant: proliferation is enhanced by round fibre cross sections and in rather wide-meshed scaffolds.  相似文献   

13.
14.
We present a probabilistic registration algorithm that robustly solves the problem of rigid-body alignment between two shapes with high accuracy, by aptly modeling measurement noise in each shape, whether isotropic or anisotropic. For point-cloud shapes, the probabilistic framework additionally enables modeling locally-linear surface regions in the vicinity of each point to further improve registration accuracy. The proposed Iterative Most-Likely Point (IMLP) algorithm is formed as a variant of the popular Iterative Closest Point (ICP) algorithm, which iterates between point-correspondence and point-registration steps. IMLP’s probabilistic framework is used to incorporate a generalized noise model into both the correspondence and the registration phases of the algorithm, hence its name as a most-likely point method rather than a closest-point method. To efficiently compute the most-likely correspondences, we devise a novel search strategy based on a principal direction (PD)-tree search. We also propose a new approach to solve the generalized total-least-squares (GTLS) sub-problem of the registration phase, wherein the point correspondences are registered under a generalized noise model. Our GTLS approach has improved accuracy, efficiency, and stability compared to prior methods presented for this problem and offers a straightforward implementation using standard least squares. We evaluate the performance of IMLP relative to a large number of prior algorithms including ICP, a robust variant on ICP, Generalized ICP (GICP), and Coherent Point Drift (CPD), as well as drawing close comparison with the prior anisotropic registration methods of GTLS-ICP and A-ICP. The performance of IMLP is shown to be superior with respect to these algorithms over a wide range of noise conditions, outliers, and misalignments using both mesh and point-cloud representations of various shapes.  相似文献   

15.
Coronary artery disease results in blockages or narrowing of the artery lumen. Drug eluting stents (DES) were developed to replace bare metal stents in an effort to combat re-blocking of the diseased artery following treatment. The numerical models developed within this study focus on representing the changing trends of drug delivery from an idealised DES in an arterial wall with an anisotropic ultra-structure. To reduce the computational burden of solving coupled physics problems, a model reduction strategy was adopted. Particular focus has been placed upon adequately modelling the influence of strut compression as there is a paucity of numerical studies that account for changes in transport properties in compressed regions of the arterial wall due to stent deployment. This study developed an idealised numerical modelling framework to account for the changes in the directionally dependent porosity and tortuosities of the arterial wall as a result of radial strut compression. The results show that depending on the degree of strut compression, trends in therapeutic drug delivery within the arterial wall can be either increased or decreased. The study highlights the importance of incorporating compression into numerical models to better represent transport within the arterial wall and suggests an appropriate numerical modelling framework that could be utilised in more realistic patient specific arterial geometries.  相似文献   

16.
Heat-pulse methods to determine sap flux density in trees are founded on the theory of heat conduction and heat convection in an isotropic medium. However, sapwood is clearly anisotropic, implying a difference in thermal conductivity along and across the grain, and hence necessitates the theory for an anisotropic medium. This difference in thermal conductivities, which can be up to 50%, is, however, not taken into account in the key equation leading to the currently available heat-pulse methods. Despite this major flaw, the methods remain theoretically correct as they are based on derivations of the key equation, ruling out any anisotropic aspects. The importance of specifying the thermal characteristics of the sapwood according to axial, tangential or radial direction is revealed as well as referring to and using the proper anisotropic theory in order to avoid confusion and misinterpretation of thermal properties when dealing with sap flux density measurements or erroneous results when modelling heat transport in sapwood.  相似文献   

17.
Stem cell maintenance in multilayered shoot apical meristems (SAMs) of plants requires strict regulation of cell growth and division. Exactly how the complex milieu of chemical and mechanical signals interact in the central region of the SAM to regulate cell division plane orientation is not well understood. In this paper, simulations using a newly developed multiscale computational model are combined with experimental studies to suggest and test three hypothesized mechanisms for the regulation of cell division plane orientation and the direction of anisotropic cell expansion in the corpus. Simulations predict that in the Apical corpus, WUSCHEL and cytokinin regulate the direction of anisotropic cell expansion, and cells divide according to tensile stress on the cell wall. In the Basal corpus, model simulations suggest dual roles for WUSCHEL and cytokinin in regulating both the direction of anisotropic cell expansion and cell division plane orientation. Simulation results are followed by a detailed analysis of changes in cell characteristics upon manipulation of WUSCHEL and cytokinin in experiments that support model predictions. Moreover, simulations predict that this layer-specific mechanism maintains both the experimentally observed shape and structure of the SAM as well as the distribution of WUSCHEL in the tissue. This provides an additional link between the roles of WUSCHEL, cytokinin, and mechanical stress in regulating SAM growth and proper stem cell maintenance in the SAM.  相似文献   

18.
We have found that dialysis of 5 mg/mL collagen solution into the phosphate solution with a pH of 7.1 and an ionic strength of 151 mM [corrected] at 25 °C results in a collagen gel with a birefringence and tubular pores aligned parallel to the growth direction of the gel. The time course of averaged diameter of tubular pores during the anisotropic gelation was expressed by a power law with an exponent of 1/3, suggesting that the formation of tubular pores is attributed to a spinodal decomposition-like phase separation. Small angle light scattering patterns and high resolution confocal laser scanning microscope images of the anisotropic collagen gel suggested that the collagen fibrils are aligned perpendicular to the growth direction of the gel. The positional dependence of the order parameter of the collagen fibrils showed that the anisotropic collagen gel has an orientation gradient.  相似文献   

19.
In this work, a novel anisotropic material law for the mechanical behaviour of the bone tissue is proposed. This new law, based on experimental data, permits to correlate the bone apparent density with the obtained level of stress. Combined with the proposed material law, a biomechanical model for predicting bone density distribution was developed, based on the assumption that the bone structure is a gradually self-optimising anisotropic biological material that maximises its own structural stiffness. The strain and the stress field required in the iterative remodelling process are obtained by means of an accurate meshless method, the Natural Neighbour Radial Point Interpolation Method (NNRPIM). Comparing with other numerical approaches, the inclusion of the NNRPIM presents numerous advantages such as the high accuracy and the smoother stress and strain field distribution. The natural neighbour concept permits to impose organically the nodal connectivity and facilitates the analysis of convex boundaries and extremely irregular meshes. The viability and efficiency of the model were tested on several trabecular benchmark patch examples. The results show that the pattern of the local bone apparent density distribution and the anisotropic bone behaviour predicted by the model for the microscale analysis are in good agreement with the expected structural architecture and bone apparent density distribution.  相似文献   

20.
In this work, a new model for internal anisotropic bone remodelling is applied to the study of the remodelling behaviour of the proximal femur before and after total hip replacement (THR). This model considers bone remodelling under the scope of a general damage-repair theory following the principles of continuum damage mechanics. A "damage-repair" tensor is defined in terms of the apparent density and Cowin's "fabric tensor", respectively, associated with porosity and directionality of the trabeculae. The different elements of a thermodynamically consistent damage theory are established, including resorption and apposition criteria, evolution law and rate of remodelling. All of these elements were introduced and discussed in detail in a previous paper (García, J. M., Martinez, M. A., Doblaré, M., 2001. An anisotrophic internal-external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies. Computer Methods in Biomechanics and Biomedical Engineering 4(4), 355-378.), including the definition of the proposed mechanical stimulus and the qualitative properties of the model. In this paper, the fundamentals of the proposed model are briefly reviewed and the computational aspects of its implementation are discussed. This model is then applied to the analysis of the remodelling behaviour of the intact femur obtaining densities and mass principal values and directions very close to the experimental data. The second application involved the proximal femoral extremity after THR and the inclusion of an Exeter prosthesis. As a result of the simulation process, some well-known features previously detected in medical clinics were recovered, such as the stress yielding effect in the proximal part of the implant or the enlargement of the cortical layer at the distal part of the implant. With respect to the anisotropic properties, bone microstructure and local stiffness are known to tend to align with the stress principal directions. This experimental fact is mathematically proved in the framework of this remodelling model and clearly shown in the results corresponding to the intact femur. After THR the degree of anisotropy decreases tending, specifically in the proximal femur, to a more isotropic behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号