首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
This report describes an improved immunochemical procedure for staining cells in suspension for amount of incorporated bromodeoxyuridine (BrdUrd) and total DNA. In this procedure, cellular DNA is partially denatured by extracting the cells with 0.1 M HCl and then heating them to 80 degrees C in a 50% formamide solution. The cells are then immunofluorescently stained using a monoclonal antibody against BrdUrd in single-strand DNA (ssDNA) and counterstained for DNA content with propidium iodide (PI), a dye that fluoresces preferentially when bound to double-strand DNA (dsDNA). We show that the relative amounts of immunofluorescently stained BrdUrd in ssDNA and PI in dsDNA can be altered reciprocally by changing the formamide concentration, denaturation time, and denaturation temperature. We show that this new immunochemical staining procedure allows more complete DNA denaturation so that fivefold lower levels of BrdUrd incorporation can be quantified. In addition, we show that the BrdUrd-linked immunofluorescence achieved using the new denaturation procedure is more linearly related to cellular BrdUrd content than that achieved after acid DNA denaturation. However, cell loss is sufficiently severe with the thermal denaturation procedure that it may not be applicable to all cell types.  相似文献   

2.
Immunochemical detection of cells that incorporate 5-bromodeoxyuridine (BrdUrd) requires prior denaturation of DNA in situ to make BrdUrd binding sites accessible to the antibodies. A technique is described in which the DNA denaturation step is facilitated by a) prior dissociation of histones from DNA and b) the use of low ionic strength buffer in which the cells are suspended during heating. Dissociation of histones is achieved by cell treatment with 0.08N HCl at 0 degree C, which a) increases accessibility of DNA to propidium iodide (and following the denaturation to the antibodies); b) lowers stability of DNA to thermal denaturation; c) decreases differences between various cell types due to variability in chromatin structure; and d) ensures more complete DNA denaturation. Cell heating (80-95 degrees C) at low ionic strength (1 mM Na+) eliminates the need for formamide and results in extensive and rapid DNA denaturation. The method was applied in Friend leukemia, L1210 and HL-60 cell lines, and to bone marrow, experimental animal tumor and primary human tumor cells.  相似文献   

3.
Immunochemical procedures for detection of BrdUrd incorporated into DNA require a denaturation step of DNA. Denaturation with HCl is widely used for flow cytometric analysis of the cell cycle and for histological preparations. This brief communication describes an attempt to standardize a denaturation procedure with HCl. Various denaturation conditions at 20 degrees C were examined for human promyelocytic leukemia cells (HL-60 cells) fixed in ethanol. After denaturation of DNA, the cells were stained by an indirect immunofluorescence method using a commercially available monoclonal anti-BrdUrd antibody or by propidium iodide. The relative fluorescence intensities of stained BrdUrd and double-stranded DNA were altered reciprocally by changing HCl concentration and/or denaturation time. Treatment with 4N HCl for 10-20 min at 20 degrees C allowed denaturation of more than 80% of DNA and the maximum BrdUrd-linked immunofluorescence. Under this condition, the coefficient of variation of the DNA histograms remained relatively small.  相似文献   

4.
We describe a multivariate flow cytometric technique for simultaneous analysis of specific nuclear protein, bromodeoxyuridine (BrdUrd) incorporated into DNA and DNA content in single cells in suspension. The procedure involves fixation of BrdUrd-exposed cells with paraformaldehyde, heat denaturation of cellular DNA, followed by sequential immunochemical reactions to label incorporated BrdUrd and nuclear protein, and finally staining of total DNA with propidium iodide. The cells are analyzed flow cytometrically and multivariate data acquired in list mode to facilitate analyses of heterogeneous subpopulations. We applied this technique to measure c-myc protein, incorporated BrdUrd, and DNA content in subpopulations present in a recombinant Chinese hamster ovary (CHO) cell line carrying approximately 800 copies of murine c-myc sequences under control of an inducible heat shock promoter.  相似文献   

5.
Mitotic cells could be well discriminated from the cells in the G1-, S- and G2-phases of the cell cycle using pulse labeling of S-phase cells with bromodeoxy-uridine (BrdUrd) and staining of the cells for incorporated BrdUrd and total DNA content. Unlabeled G2- and M-phase cells could be measured as two separate peaks according to propidium iodide fluorescence. M-phase cells showed lower propidium iodide fluorescence emission compared to G2-phase cells. The fluorescence difference of M- and G2-phase cells was caused by the different thermal denaturation of their DNA. Best separation of M- and G2-phase cells was obtained after 30-50 min heat treatment at 95 degrees C. Mitotic index could be measured if no unlabeled S-phase cells were present in the cell culture. With additional measurements of 90 degree scatter and/or forward scatter signals, mitotic cells could be clearly discriminated from both unlabeled G2- and S-phase cells. The correct discrimination (about 99%) of mitotic cells from interphase cells was verified by visual analysis of the nuclear morphology after selective sorting. Unlabeled and labeled mitotic cells could be observed as pulse-labeled cells progressed through the cell cycle. We conclude that this modified BrdUrd/DNA technique using prolonged thermal denaturation and the simultaneous measurement of scatter signals may offer additional information especially in the presence of BrdUrd-unlabeled S-phase cells.  相似文献   

6.
After pulse labeling of mammalian cells in vivo or in vitro with 5-bromodeoxyuridine (BrdUrd), followed by immunostaining with a monoclonal antibody to DNA-incorporated BrdUrd, various intranuclear staining patterns are observed. These results are obtained in various labeling, fixation, denaturation, and staining conditions. We defined five different patterns in immunoperoxidase-stained monolayers of human and rodent cancer cells and compared mean nuclear areas as measured by computerized planimetry. Furthermore, we evaluated frequency distributions of these patterns in partly synchronized cell populations and correlated these results with flow cytometric DNA histograms. The results indicate that the observed patterns reflect the spatial and temporal organization of DNA synthesis, which seems to be characterized by at least three successive stages of replication. Evaluation of these patterns may have various applications in studies on cell cycle kinetics.  相似文献   

7.
In studies using bromodeoxyuridine (BrdUrd) and/or iododeoxyuridine (IdUrd) to label S phase cells in cancer patients, several unique observations were made regarding DNA replication sites and the organization of newly synthesized DNA in post-mitotic cells. While the majority of tumour specimens removed at the end of infusions demonstrated concentration of replication sites around the nuclear membrane, biopsies obtained in leukaemic patients 1 week later demonstrated several distinct patterns of labelling. For example, one, two or all lobes of granulocytes were labelled. Scavenger macrophages bearing labelled leukaemic cells in their cytoplasm were also seen. Sequential IdUrd/BrdUrd labelling of solid tumours showed various patterns of nuclear/nucleolar/membrane labelling, allowing more precise localization of early versus late replication sites.  相似文献   

8.
A flow cytometric method has recently been developed using biotinylated dUTP (b-dUTP) in a reaction catalyzed by terminal deozynucleotidyl transferase (TdT) to identify the endonuclease-induced DNA strand breaks occurring during apoptosis. Counterstaining of DNA makes it possible to relate apoptosis to cell cycle position or DNA index. In the present study, we compared this method with one using digoxigenin-conjugated dUTP (d-dUTP) to label apoptotic cells. The discrimination of apoptotic from nonapoptotic cells was similar when incorporation of d-dUTP was compared with b-dUTP. Both techniques resulted in a 20-30 fold increase in staining of apoptotic over nonapoptotic cells although somewhat less background fluorescence was observed with the d-dUTP. Direct labeling with fluo-resceinated dUTP (f-dUTP) was less sensitive in detecting DNA strand breaks, but had the advantage of simplicity. The principle of labeling DNA strand breaks using TdT was also employed to identify DNA replicating cells. To this end, the cells were incubated in the presence of BrdUrd, then exposed to UV light to selectively photolyse DNA containing the incorporated BrdUrd. DNA strand breaks resulting from the photolysis were then labeled with b-dUTP or d-dUTP. This approach is an alternative to immunocytochemical detection of BrdUrd incorporation, but unlike the latter does not require prior DNA denaturation, thus can be applied when the denaturation step must be avoided. The method was sensitive enough to recognize DNA synthesizing cells that were incubated with BrdUrd for only 5 min, the equivalent of replication of less than 1% of the cell's genome. The discrimination between apoptotic vs. BrdUrd incorporating-cells is based on different extractability of DNA following cell fixation. This method can be applied to analyze both cell proliferation (DNA replication) and death (by apoptosis) in a single measurement.  相似文献   

9.
A flow cytometric method has recently been developed using biotinylated dUTP (b-dUTP) in a reaction catalyzed by terminal deozynucleotidyl transferase (TdT) to identify the endonuclease-induced DNA strand breaks occurring during apoptosis. Counterstaining of DNA makes it possible to relate apoptosis to cell cycle position or DNA index. In the present study, we compared this method with one using digoxigenin-conjugated dUTP (d-dUTP) to label apoptotic cells. The discrimination of apoptotic from nonapoptotic cells was similar when incorporation of d-dUTP was compared with b-dUTP. Both techniques resulted in a 20–30 fold increase in staining of apoptotic over nonapoptotic cells although somewhat less background fluorescence was observed with the d-dUTP. Direct labeling with fluo-resceinated dUTP (f-dUTP) was less sensitive in detecting DNA strand breaks, but had the advantage of simplicity. The principle of labeling DNA strand breaks using TdT was also employed to identify DNA replicating cells. To this end, the cells were incubated in the presence of BrdUrd, then exposed to UV light to selectively photolyse DNA containing the incorporated BrdUrd. DNA strand breaks resulting from the photolysis were then labeled with b-dUTP or d-dUTP. This approach is an alternative to immunocytochemical detection of BrdUrd incorporation, but unlike the latter does not require prior DNA denaturation, thus can be applied when the denaturation step must be avoided. The method was sensitive enough to recognize DNA synthesizing cells that were incubated with BrdUrd for only 5 min, the equivalent of replication of less than 1% of the cell's genome. The discrimination between apoptotic vs. BrdUrd incorporating-cells is based on different extractability of DNA following cell fixation. This method can be applied to analyze both cell proliferation (DNA replication) and death (by apoptosis) in a single measurement.  相似文献   

10.
A new staining protocol is described for the immunocytochemical detection of BrdUrd labeled nuclei. Pepsin treatment of ethanol fixed cells or tissue, followed by DNA denaturation at low pH, resulted in increased sensitivity of BrdUrd staining comparable to the thermal denaturation protocol, and decreased background binding. This technique is applicable to cell suspensions, including cultured cells and bone marrow cells. Furthermore, pepsin digestion of ethanol fixed tissue fragments resulted in a high recovery of nuclei in which incorporated BrdUrd could be detected. This possibility, together with the high sensitivity, make this method especially suitable for cell kinetic studies of human solid tumors in vivo.  相似文献   

11.
W Beisker  F Dolbeare  J W Gray 《Cytometry》1987,8(2):235-239
This report describes an improved immunochemical procedure to stain cells in suspension for incorporated bromodeoxyuridine (BrdUrd) and total DNA content. The procedure consists of five steps: chromatin proteins are extracted by treating with 0.1 M HCl and 0.7% Triton X-100 to facilitate DNA denaturation and to minimize nonspecific staining; cellular DNA is denatured by heating to 100 degrees C in distilled water; BrdUrd in single-stranded DNA (ssDNA) is stained using an immunochemical procedure; autofluorescence is reduced using sodium borohydride (NaBH4); and DNA is stained with the fluorescent dye propidium iodide. With this procedure, the BrdUrd incorporated by CHO cells during periods as short as a few seconds can be detected using flow cytometry. In addition, the stoichiometry of the immunofluorescent staining procedure is high.  相似文献   

12.
BACKGROUND: We describe a new nonenzymatic methodology that allows the simultaneous detection of DNA replication and other cellular markers such as immunophenotyping. DNA replicating cells are identified by their incorporation of halogenated thymidine analogs, e.g., 5-bromo-deoxyuridine (BrdUrd). METHODS: Irradiation with ultraviolet (UV)-B or UV-A light in the presence of Hoechst 33258 and subsequent treatment with a hypotonic buffer makes BrdUrd accessible to monoclonal antibodies (mAb), thus allowing its sensitive detection. RESULTS: The photolysis of BrdUrd in DNA with UV light is sequence dependent and results in DNA damage, allowing the detection of remaining BrdUrd using hypotonic conditions. However, treatment with other inducers of single or double- strand breaks of DNA such as gamma irradiation or hydrogen peroxide did not allow BrdUrd detection. The new methodology is compatible with both mild crosslinking fixation, i.e., aldehydes, or coagulative fixation, i.e., alcohols. The successful identification of CD34+, CD138+, or CD19+ cells out of heterogeneous cell suspensions and their cell-cycle analysis are described. Results correlated very well with acid denaturation (r = 0.972). The average coefficient of variation (CV) of G(1) in the DNA histogram was smaller than 5%, resulting in good preservation of DNA distribution. Also, the signal-to-noise ratio was almost twice as high as for 2N acid denaturation, facilitating convenient discrimination of BrdUrd-positive cells. CONCLUSIONS: In contrast to previous approaches, this methodology eliminates the need for any additional enzymatic treatment such as DNA digestion or strand-break labeling after UV irradiation. The method is fast, convenient, and inexpensive and should be able to promote the use of halogenated pyrimidines in basic and clinical research of cancer, immunology, and pharmacology.  相似文献   

13.
This report describes a method by which mitotic cells were isolated from nonsynchronized Cloudman melanoma cells that had been pulse labeled with 5-bromo-2'-deoxyuridine (BrdUrd) and double-stained with a fluoresceinated monoclonal antibody to BrdUrd and with propidium iodide (PI). In initial experiments, melanoma cells were first pulse labeled with BrdUrd, treated with prostaglandin E1 (PGE1 10 micrograms/m1) or vehicle (0.1% ethanol) for up to 24 hours, then stained with anti-BrdUrd and PI. PGE1-treated cells monitored at 3-hour intervals were observed to migrate from S phase to G2 phase, then, enigmatically, back into the late S phase region of the distribution. In other experiments, cells treated with PGE1 were pulse labeled with BrdUrd at the end of the treatment period and harvested. In these experiments, there was a small, discrete subpopulation of cells within the late S phase region of the DNA distribution that was negative for anti-BrdUrd. This subpopulation of cells was sorted and examined by light microscopy. We observed that 95% of these BrdUrd-negative "S phase" cells were mitotic cells. Since mitotic cells and G2 cells have equivalent amounts of DNA, the reduced red fluorescence exhibited by these cells may be due to a greater sensitivity to denaturation, which has been described for DNA of mitotic cells, and would account for the phenomenon of cells appearing to move "backwards" in the cell cycle. This report indicates that although the BrdUrd/PI method can further define the cell cycle into four compartments, it can also lead to over-estimation of S phase cells in kinetic studies because of contaminating mitotic cells.  相似文献   

14.
F Dolbeare  J W Gray 《Cytometry》1988,9(6):631-635
We describe an enzymatic procedure for exposure of single-stranded DNA (ssDNA) containing the halogenated pyrimidines (HdUrd) bromodeoxyuridine (BrdUrd) or iododeoxyuridine (IdUrd) in single cells to antibodies that bind to HrdUrd only in ssDNA. Production of ssDNA was accomplished by digesting the DNA using either restriction endonucleases alone or endonucleases followed by exonuclease III. The enzymatic production of ssDNA was maximal when 0.1 N HCl or 0.1 M citric acid plus Triton X-100 was added to extract nuclear proteins prior to enzymatic denaturation. The restriction endonucleases Bam HI, Dde I, Eco RI, and Hind III produced significant ssDNA when used alone to allow binding of detectable amounts of the anti-HdUrd antibody IU-4 in Chinese hamster ovary cells labeled with 10 microM BrdUrd or 10 microM IdUrd. However, these treatments did not expose sufficient ssDNA to allow binding of IU-1, an anti-HdUrd antibody with lower binding affinity. IU-4 binding was most intense after treatment with Eco RI. Treatment with exonuclease III following endonuclease digestion allowed substantially more IU-4 binding.  相似文献   

15.
B Kirkhus  O P Clausen 《Cytometry》1990,11(2):253-260
Hairless mice were injected intraperitoneally with bromodeoxyuridine (Brd-Urd). Basal cells were isolated from epidermis, fixed in 70% ethanol, and prepared for bivariate BrdUrd/DNA flow cytometric (FCM) analysis. Optimum detection of incorporated BrdUrd in DNA was obtained by combining pepsin digestion and acid denaturation. The cell loss was reduced to a minimum by using phosphate-buffered saline containing Ca2+ and Mg2+ to neutralize the acid. The percentage of cells in S phase and the average uptake of BrdUrd per labelled cell in eight consecutive windows throughout the S phase were measured after pulse labelling at intervals during a 24 h period. Furthermore, the cell cycle progression of a pulse-labelled cohort of cells was followed up to 96 h after BrdUrd injection. In general the results from both experiments were in good agreement with previous data from 3H-thymidine labelling studies. The percentage of cells in S phase was highest at night and lowest in the afternoon, whereas the average uptake of BrdUrd per labelled cell showed only minor circadian variations. There were no indications that BrdUrd significantly perturbed normal epidermal growth kinetics. A cell cycle time of about 36 h was observed for the labelled cohort. Indications of heterogeneity in traverse through G1 phase were found, and the existence of slowly cycling or temporarily resting cells in G2 phase was confirmed. There was, however, no evidence of a significant population of temporarily resting cells in the S phase. Bivariate DNA/keratin FCM analysis revealed a high purity of basal cells in the suspensions and indicated that the synthesis of the differentiation-keratin K10 was turned on only in G1 phase and after the last division.  相似文献   

16.
The incorporation of bromodeoxyuridine (BrdUrd) into newly synthesized DNA has been analysed during hepatocellular regeneration induced by partial hepatectomy in young rats. The kinetic state of the liver has been studied by flow cytometric analysis of the incorporated BrdUrd, while the fine localization of DNA replication sites through the cell cycle has been investigated at the ultrastructural level by the immunogold technique. Eighteen hours after partial hepatectomy flow cytometry revealed an early S phase distribution which corresponded to a specific staining of the interchromatin domains of the hepatocyte nucleus. Thirty-four hours after hepatectomy, on the other hand, when most cells were in late S, a specific staining of heterochromatin domains was observed. The effect of the BrdUrd technique on nuclear aggregation has also been analysed and discussed. The results demonstrate that specific patterns of DNA replication can be recognized during the cell cycle and that flow cytometry and electron microscopy appear to be complementary in the kinetic study of liver regeneration.  相似文献   

17.
Haemophilus influenzae was labeled with thymidine-3H (dThd), then grown in the presence of 5-bromodeoxyuridine (BrdUrd), and then irradiated with 313 nm light (a wavelength that selectively photolyzes DNA containing 5-bromouracil [BrUra]). Irradiation with 313 nm light induced breaks in the 3H-labeled strands in cells grown with BrdUrd at a much higher frequency than in 14C-labeled DNA of cells not exposed to BrdUrd. Breakage of the 3H-labeled strands was about 0.6% as efficient as that of fully BrUra-substituted DNA. During growth in the presence of BrdUrd, susceptibility to 313 nm-induced breakage of the 3H-labeled DNA strands increased, reaching a maximum in about one generation, and it decreased to zero during subsequent growth for one generation in medium containing dThd instead of BrdUrd. Heat denaturation of DNA extracted from dThd-3H-labeled cells grown in the presence of BrdUrd eliminated 313 nm-induced breakage of the 3H-labeled strands. It is concluded that breakage of the 3H-labeled DNA strands resulted from reaction with photoproducts in the base-paired, BrUra-containing strands, rather than from photolysis of BrdUrd incorporated into parental strands. It may be possible to utilize the phenomenon of interstrand breakage in physical studies of DNA replication.  相似文献   

18.
J Hemmer 《Cytometry》1990,11(5):603-609
In vitro bromodeoxyuridine (BrdUrd) incubated single-cell suspensions obtained from solid tumors were fixed on slides for subsequent sample processing. As dispersal of nuclei largely was avoided, only small amounts of cells were needed for examination. The sensitivity of detecting even low BrdUrd incorporation rates could be improved by treatment with intense DNA denaturation conditions. This technique was applied to monitor cytokinetic response to chemotherapy and radiation in oral carcinomas by analysing biopsies taken consecutively in the course of treatment. By combining BrdUrd labeling and DNA flow cytometry, cells arrested in S phase easily could be distinguished from cells showing continuous proliferation.  相似文献   

19.
The effects of cisplatin on the cell cycle and DNA synthesis of human lung adenocarcinoma cell line PC-9 were examined by flow cytometry. The cellular DNA content and the bromodeoxyuridine (BrdUrd) incorporation rate were measured simultaneously using a monoclonal anti-BrdUrd antibody. Following exposure to cisplatin (1.0 micrograms/ml) for 1 and 24 hr, the bivariate DNA/BrdUrd distributions revealed a delayed S-phase transit and an accumulation of cells in the G2M phase. The BrdUrd-linked green fluorescence intensity continued to decrease with the lapse of time. However, early- and mid-S-phase cells soon recovered DNA synthesis activity, and the former showed higher activity than the control cells. These findings suggested the vigorous DNA synthesis of cells in early S phase. However, for quantitative analysis of chemotherapeutic effects, some problems remained to be resolved regarding the condition for DNA denaturation and its alteration by the agents.  相似文献   

20.
This report describes the results of the comparison of three different methods and three monoclonal antibodies to stain cells in suspension for incorporated bromodeoxyuridine and total DNA content. The procedures were tested in three different experimental tumour cell lines. The sensitivity of the different procedures was expressed as the ratio of the anti-BrdUrd fluorescence intensities of the S and G1 phase cells (FS/FG1 ratio). There were remarkable differences in sensitivity between the different procedures. With the heat denaturation the most favourable FS/FG1 ratio's were obtained but substantial cell loss occurred during this procedure which is a disadvantage for clinical application. With the pepsin digestion + acid denaturation procedure cell loss was negligible. The standard acid denaturation procedure was inferior to the other two methods. Using the pepsin digestion + acid denaturation procedure we examined the variations in sensitivity for the different monoclonal antibodies and cell lines and the influence of BrdUrd concentration, labelingtime and cell concentration. The binding characteristics for the various antibodies differed considerably in our hands. Only with the IU4 antibody we obtained FS/FG1 ratio's comparable with those described in the literature. No difference was observed between the cell lines. Variation in cell concentration between 1 x 10(4) to 1 x 10(6) ml nor BrdUrd concentration appeared to influence the sensitivity of the procedure. A labelingtime of 1 h or even 30 min seems to be more than sufficient for an optimal FS/FG1 ratio. Our results indicate that using the appropriate antibody and immunofluorescence BrdUrd can be detected by flow cytometry, after incorporation into the DNA of tumour cells under a wide range of culture conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号