首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Tomono  T Urayama  M Ueyama 《Human cell》1989,2(3):278-282
Effects of the active oxygen on the extrusion mechanism of once-increased cytoplasmic Ca2+, which causes various physiological phenomena, were investigated using different kinds of culture cells. First we found that, in response to stimulation with vitamin K (VK), various culture cells showed a decrease in cytoplasmic Ca2+ concentration. On the presumption that this phenomenon might be related to the oxidizing action of VK, we performed the same experiments using oxidizing agents such as H2O2 or KO2. They also showed a decrease in cytoplasmic Ca2+ concentration. Furthermore, they suppressed the increase of cytoplasmic Ca2+ by vasopressin. It would be inferred from these results that the active oxygen may act upon some site of the cellular signal transduction system of cell membrane to lower the cytoplasmic Ca2+ level.  相似文献   

2.
Several cases of ADP-ribosylation of endogenous proteins in procaryotes have been discovered and investigated. The most thoroughly studied example is the reversible ADP-ribosylation of the dinitrogenase reductase from the photosynthetic bacteriumRhodospirillum rubrum and related bacteria. A dinitrogenase reductase ADP-ribosyltransferase (DRAT) and a dinitrogenase reductase ADP-ribose glycohydrolase (DRAG) fromR. rubrum have been isolated and characterized. The genes for these proteins have been isolated and sequences and show little similarity to the ADP-ribosylating toxins. Other targets for endogenous ADP-ribosylation by procaryotes include glutamine synthetase inR. rubrum andRhizobium meliloti and undefined proteins inStreptomyces griseus andPseudomonas maltophila.  相似文献   

3.
Iodoacetic acid inactivates dehydroquinase by simultaneously alkylating 2 methionine residues (Met-23 and Met-205), presumed to be active site residues (described in Kleanthous, C., Campbell, D. G., and Coggins, J. R. (1990) J. Biol. Chem. 265, 10929-10934). Although both sites are carboxymethylated to the same degree in the inactivated enzyme, the modification of Met-205 may be reversed by treatment with mercaptoethanol at alkaline pH, as shown by the stoichiometric loss of label from this site. This, in turn, leads to partial reactivation of the inactive enzyme. Alkylation of Met-23 is not reversible under these conditions. The chemistry of the cleavage reaction at Met-205 was investigated by isolating the cleavage product which was identified by mass spectrometry as the ammonium salt of 2-hydroxyethyl thioacetate. This result is consistent with nucleophilic attack by the thiolate anion of mercaptoethanol on the alpha-carbon of the carboxymethyl moiety, which restores the side chain of the methionine residue (Met-205) and liberates 2-hydroxyethyl thioacetate. The differential reactivity of the 2 carboxymethylated methionine residues toward mercaptoethanol is likely to be a reflection of their different microenvironments in the folded protein. This assertion is borne out by unfolding experiments which indicate that neither of the carboxymethylated methionine residues in dicarboxymethylated dehydroquinase is susceptible to mercaptoethanol cleavage if the protein is first denatured by either guanidine hydrochloride or urea. Furthermore, this denatured material refolds after removal of denaturant to yield protein with reactivation properties similar to untreated, dicarboxymethylated enzyme.  相似文献   

4.
F Naider  Z Bohak  J Yariv 《Biochemistry》1972,11(17):3202-3208
  相似文献   

5.
Brittis PA  Lu Q  Flanagan JG 《Cell》2002,110(2):223-235
As axons grow past intermediate targets, they change their responsiveness to guidance cues. Local upregulation of receptor expression is involved, but the mechanisms for this are not clear. Here protein synthesis is traced within individual axons by introducing RNAs encoding visualizable reporters. Individual severed axons and growth cones can translate proteins and also export them to the cell surface. As axons reach the spinal cord midline, EphA2 is among the receptors upregulated on at least some distal axon segments. Midline reporter upregulation is recapitulated by part of the EphA2 mRNA 3' untranslated region, which is highly conserved and includes known translational control sequences. These results show axons contain all the machinery for protein translation and cell surface expression, and they reveal a potentially general and flexible RNA-based mechanism for regulation localized within a subregion of the axon.  相似文献   

6.
谷氧还蛋白2(Glutaredoxin 2,GLRX2)是一种相对分子质量较小的氧化还原酶,属于硫氧还蛋白家族成员,以谷胱甘肽为辅基调节细胞的氧化还原内环境。在非应激条件下,GLRX2结合铁硫簇,以二聚体形式存在,可能参与铁硫簇的转运或运输;当氧化压力增加时,铁硫簇解聚,GLRX2二聚体转化为GLRX2单体,利用单巯基或双巯基机制,发挥抗氧化应激和抗细胞凋亡的功能。GLRX2与人类健康和疾病,如心血管疾病、神经退行性疾病、白内障、肿瘤细胞生长与分化和精子成熟等密切相关。因此,对GLRX2的深入研究将有助于设计针对氧化应激的药物,为治疗和预防由此产生的疾病或健康问题带来新的希望。  相似文献   

7.
Human porphobilinogen synthase [EC.4.2.1.24] is a homo-octamer enzyme. In the active center of each subunit, four cysteines are titrated with 5,5-dithiobis(2-nitrobenzoic acid). Cys122, Cys124 and Cys132 are placed near two catalytic sites, Lys199 and Lys252, and coordinate a zinc ion, referred to as a proximal zinc ion, and Cys223 is placed at the orifice of the catalytic cavity and coordinates a zinc ion, referred to as a distal zinc ion, with His131 . When the wild-type enzymes C122A (Cys122Ala), C124A (Cys124Ala), C132A (Cys132Ala) and C223A (Cys223Ala) were oxidized by hydrogen peroxide, the levels of activity were decreased. Two cysteines were titrated with 5,5-dithiobis(2-nitrobenzoic acid) in the wild-type enzyme, while on the other hand, one cysteine was titrated in the mutant enzymes. When wild-type and mutant enzymes were reduced by 2-mercaptoethanol, the levels of activity were increased: four and three cysteines were titrated, respectively, suggesting that a disulfide bond was formed among Cys122, Cys124 and Cys132 under oxidizing conditions. We analyzed the enzyme-bound zinc ion of these enzymes using inductively coupled plasma mass spectrometry with gel-filtration chromatography. The results for C223A showed that the number of proximal zinc ions correlated to the level of enzymatic activity. Furthermore, zinc-ion-free 2-mercaptoethanol increased the activity of the wild-type enzyme without a change in the total number of zinc ions, but C223A was not activated. These findings suggest that a distal zinc ion moved to the proximal binding site when a disulfide bond among Cys122, Cys124 and Cys132 was reduced by reductants. Thus, in the catalytic functioning of the enzyme, the distal zinc ion does not directly contribute but serves rather as a reserve as the next proximal one that catalyzes the enzyme reaction. A redox change of the three cysteines in the active center accommodates the catch and release of the reserve distal zinc ion placed at the orifice of the catalytic cavity.  相似文献   

8.
Arabidopsis thaliana flavonol synthase (aFLS) catalyzes the production of quercetin, which is known to possess multiple medicinal properties. aFLS is classified as a 2-oxoglutarate dependent dioxygenase as it requires ferrous iron and 2-oxoglutarate for catalysis. In this study, the putative residues for binding ferrous iron (H221, D223 and H277), 2-oxoglutarate (R287 and S289) and dihydroquercetin (H132, F134, K202, F293 and E295) were identified via computational analyses. To verify the proposed roles of the identified residues, 15 aFLS mutants were constructed and their activities were examined via a spectroscopic assay designed in this study. Mutations at H221, D223, H277 and R287 completely abolished enzymes activities, supporting their importance in binding ferrous iron and 2-oxoglutarate. However, mutations at the proposed substrate binding residues affected the enzyme catalysis differently such that the activities of K202 and F293 mutants drastically decreased to approximately 10% of the wild-type whereas the H132F mutant exhibited approximately 20% higher activity than the wild-type. Kinetic analyses established an improved substrate binding affinity in H132F mutant (Km: 0.027+/-0.0028 mM) compared to wild-type (Km: 0.059+/-0.0063 mM). These observations support the notion that aFLS can be selectively mutated to improve the catalytic activity of the enzyme for quercetin production.  相似文献   

9.
Integrins expressed on leukocytes possess the ability to maintain themselves in a non-adhesive state, thus preventing unwarranted adhesion and uncontrolled inflammation. Leukocyte adhesion is regulated through the modulation of integrin receptors such as alpha(V)beta(3). Firm adhesion to the extracellular matrix and directed cellular motility requires the reorganization of the actin cytoskeleton. The ability of beta(3) to recruit signaling and scaffolding molecules to propagate alpha(V)beta(3) -mediated signals is regulated in part by the phosphorylation of the beta(3) cytoplasmic tail. The identities of integrin-associated signaling molecules within alpha(V)beta(3) podosomes and in particular the proximal binding partners of the beta(3) cytoplasmic tail are not completely known. Here we show that alpha(V)beta(3) ligation induces Pyk2-Tyr-402 phosphorylation and its association with the beta(3) cytoplasmic tail in a beta(3)-Tyr-747 phosphorylation-dependent manner. Pyk2 binding to the beta(3) cytoplasmic tail is direct and dependent upon Pyk2-Tyr-402 and beta(3) -Tyr-747 phosphorylations. These data identify Pyk2 as a phosphorylated beta(3) binding partner, providing a potential structural and signaling platform to achieve alpha(V)beta(3) -mediated remodeling of the actin cytoskeleton.  相似文献   

10.
Ubiquitin conjugation to receptor tyrosine kinases is a critical biochemical step in attenuating their signaling through lysosomal degradation. Our previous studies have established Cbl as an E3 ubiquitin ligase for ubiquitinylation and degradation of platelet-derived growth factor receptor (PDGFR) alpha and PDGFRbeta. However, the role of endogenous Cbl in PDGFR regulation and the molecular mechanisms of this regulation remain unclear. Here, we demonstrate that endogenous Cbl is essential for ligand-induced ubiquitinylation and degradation of PDGFRbeta; this involves the Cbl TKB domain binding to PDGFRbeta phosphotyrosine 1021, a known phospholipase C (PLC) gamma1 SH2 domain-binding site. Lack of Cbl or ablation of the Cbl-binding site on PDGFRbeta impedes receptor sorting to the lysosome. Cbl-deficient cells also show more PDGF-induced PLCgamma1 association with PDGFRbeta and enhanced PLC-mediated cell migration. Thus, Cbl-dependent negative regulation of PDGFRbeta involves a dual mechanism that concurrently promotes ubiquitin-dependent lysosomal sorting of the receptor and competitively reduces the recruitment of a positive mediator of receptor signaling.  相似文献   

11.
Iron–sulfur (Fe–S) clusters are ubiquitous cofactors in all life and are used in a wide array of diverse biological processes, including electron transfer chains and several metabolic pathways. Biosynthesis machineries for Fe–S clusters exist in plastids, the cytosol, and mitochondria. A single monothiol glutaredoxin (GRX) is involved in Fe–S cluster assembly in mitochondria of yeast and mammals. In plants, the role of the mitochondrial homolog GRXS15 has only partially been characterized. Arabidopsis (Arabidopsis thaliana) grxs15 null mutants are not viable, but mutants complemented with the variant GRXS15 K83A develop with a dwarf phenotype similar to the knockdown line GRXS15amiR. In an in-depth metabolic analysis of the variant and knockdown GRXS15 lines, we show that most Fe–S cluster-dependent processes are not affected, including biotin biosynthesis, molybdenum cofactor biosynthesis, the electron transport chain, and aconitase in the tricarboxylic acid (TCA) cycle. Instead, we observed an increase in most TCA cycle intermediates and amino acids, especially pyruvate, glycine, and branched-chain amino acids (BCAAs). Additionally, we found an accumulation of branched-chain α-keto acids (BCKAs), the first degradation products resulting from transamination of BCAAs. In wild-type plants, pyruvate, glycine, and BCKAs are all metabolized through decarboxylation by mitochondrial lipoyl cofactor (LC)-dependent dehydrogenase complexes. These enzyme complexes are very abundant, comprising a major sink for LC. Because biosynthesis of LC depends on continuous Fe–S cluster supply to lipoyl synthase, this could explain why LC-dependent processes are most sensitive to restricted Fe–S supply in grxs15 mutants.  相似文献   

12.
Etzkorn C  Horton NC 《Biochemistry》2004,43(42):13256-13270
The 2.8 A crystal structure of the type II restriction endonuclease HincII bound to Ca(2+) and cognate DNA containing GTCGAC is presented. The DNA is uncleaved, and one calcium ion is bound per active site, in a position previously described as site I in the related blunt cutting type II restriction endonuclease EcoRV [Horton, N. C., Newberry, K. J., and Perona, J. J. (1998) Proc. Natl. Acad. Sci. U.S.A. 95 (23), 13489-13494], as well as that found in other related enzymes. Unlike the site I metal in EcoRV, but similar to that of PvuII, NgoMIV, BamHI, BglII, and BglI, the observed calcium cation is directly ligated to the pro-S(p) oxygen of the scissile phosphate. A calcium ion-ligated water molecule is well positioned to act as the nucleophile in the phosphodiester bond cleavage reaction, and is within hydrogen bonding distance of the conserved active site lysine (Lys 129), as well as the pro-R(p) oxygen of the phosphate group 3' of the scissile phosphate, suggesting possible roles for these groups in the catalytic mechanism. Kinetic data consistent with an important role for the 3'-phosphate group in DNA cleavage by HincII are presented. The previously observed sodium ion [Horton, N. C., Dorner, L. F., and Perona, J. J. (2002) Nat. Struct. Biol. 9, 42-47] persists in the active sites of the Ca(2+)-bound structure; however, kinetic data show little effect on the single-turnover rate of DNA cleavage in the absence of Na(+) ions.  相似文献   

13.
The microtubule cytoskeleton is differentially regulated by a diverse array of proteins during interphase and mitosis. Op18/stathmin (Op18) and microtubule-associated protein (MAP)4 have been ascribed opposite general microtubule-directed activities, namely, microtubule destabilization and stabilization, respectively, both of which can be inhibited by phosphorylation. Here, using three human cell models, we depleted cells of Op18 and/or MAP4 by expression of interfering hairpin RNAs and we analyzed the resulting phenotypes. We found that the endogenous levels of Op18 and MAP4 have opposite and counteractive activities that largely govern the partitioning of tubulin dimers in the microtubule array at interphase. Op18 and MAP4 were also found to be the downstream targets of Ca(2+)- and calmodulin-dependent protein kinase IV and PAR-1/MARK2 kinase, respectively, that control the demonstrated counteractive phosphorylation-mediated regulation of tubulin dimer partitioning. Furthermore, to address mechanisms regulating microtubule polymerization in response to cell signals, we developed a system for inducible gene product replacement. This approach revealed that site-specific phosphorylation of Op18 is both necessary and sufficient for polymerization of microtubules in response to the multifaceted signaling event of stimulation of the T cell antigen receptor complex, which activates several signal transduction pathways.  相似文献   

14.
Edwards SH  Thompson D  Baker SF  Wood SP  Wilton DC 《Biochemistry》2002,41(52):15468-15476
The human group IIA secreted PLA(2) is a 14 kDa calcium-dependent extracellular enzyme that has been characterized as an acute phase protein with important antimicrobial activity and has been implicated in signal transduction. The selective binding of this enzyme to the phospholipid substrate interface plays a crucial role in its physiological function. To study interfacial binding in the absence of catalysis, one strategy is to produce structurally intact but catalytically inactive mutants. The active site mutants H48Q, H48N, and H48A had been prepared for the secreted PLA(2)s from bovine pancreas and bee venom and retained minimal catalytic activity while the H48Q mutant showed the maximum structural integrity. Preparation of the mutant H48Q of the human group IIA enzyme unexpectedly produced an enzyme that retained significant (2-4%) catalytic activity that was contrary to expectations in view of the accepted catalytic mechanism. In this paper it is established that the high residual activity of the H48Q mutant is genuine, not due to contamination, and can be seen under a variety of assay conditions including assays in the presence of Co(2+) and Ni(2+) in place of Ca(2+). The crystallization of the H48Q mutant, yielding diffraction data to a resolution of 1.5 A, allowed a comparison with the corresponding recombinant wild-type enzyme (N1A) that was also crystallized. This comparison revealed that all of the important features of the catalytic machinery were in place and the two structures were virtually superimposable. In particular, the catalytic calcium ion occupied an identical position in the active site of the two proteins, and the catalytic water molecule (w6) was clearly resolved in the H48Q mutant. We propose that a variation of the calcium-coordinated oxyanion ("two water") mechanism involving hydrogen bonding rather than the anticipated full proton transfer to the histidine will best explain the ability of an active site glutamine to allow significant catalytic activity.  相似文献   

15.
Mammalian thioredoxin reductase [EC 1.6.4.5], a homodimeric flavoprotein, has a marked similarity to glutathione reductase. The two cysteines in the N-terminal FAD domain (-Cys59-x-x-x-x-Cys64-) and histidine (His472) are conserved between them at corresponding positions, but the mammalian thioredoxin reductase contains a C-terminal extension of selenocysteine (Sec or U) at the penultimate position and a preceding cysteine (-Gly-Cys497-Sec498-Gly). Introduction of mutations into the cloned rat thioredoxin reductase gene revealed that residues Cys59, Cys64, His472, Cys497, and Sec498, as well as the sequence of Cys497 and Sec498 were essential for thioredoxin-reducing activity. To analyze the catalytic mechanism of the mammalian thioredoxin reductase, the wild-type, U498C, U498S, C59S, and C64S were overproduced in a baculovirus/insect cell system and purified. The wild-type thioredoxin reductase produced in this system, designated as WT, was found to lack the Sec residue and to terminate at Cys497. A Sec-containing thioredoxin reductase, which was purified from COS-1 cells transfected with the wild-type cDNA, was designated as SecWT and was used as an authentic enzyme. Among mutant enzymes, only U498C retained a slight thioredoxin-reducing activity at about three orders magnitude lower than SecWT. WT, U498C, and U498S showed some 5,5'-dithiobis(2-nitrobenzoic acid)-reducing activity and transhydrogenase activity, and C59S and C64S had substantially no such activities. These data and spectral analyses of these enzymes suggest that Cys59 and Cys64 at the N-terminus, in conjunction with His472, function as primary acceptors for electrons from NADPH via FAD, and that the electrons are then transferred to Cys497-Sec498 at the C-terminus for the reduction of oxidized thioredoxin in the mammalian thioredoxin reductase.  相似文献   

16.
FAD synthase (FMN:ATP adenylyl transferase, FMNAT or FADS, EC 2.7.7.2) is the last enzyme in the pathway converting riboflavin into FAD. In humans, FADS is localized in different subcellular compartments and exists in different isoforms. Isoform 2 (490-amino acids) is organized in two domains: the 3′-phosphoadenosine-5′-phosphosulfate (PAPS) reductase domain, that is the FAD-forming catalytic domain, and one resembling a molybdopterin-binding (MPTb) domain, with a hypothetical regulatory role. hFADS2 contains ten Cys residues, seven of which located in the PAPS reductase domain, with a possible involvement either in FAD synthesis or in FAD delivery to cognate apo-flavoproteins. A homology model of the PAPS reductase domain of hFADS2 revealed a co-ordinated network among the Cys residues in this domain. In this model, C312 and C303 are very close to the flavin substrate, consistent with a significantly lowered FAD synthesis rate in C303A and C312A mutants. FAD synthesis is also inhibited by thiol-blocking reagents, suggesting the involvement of free cysteines in the hFADS2 catalytic cycle. Mass spectrometry measurements and titration with thiol reagents on wt hFADS2 and on several individual cysteine/alanine mutants allowed us to detect two stably reduced cysteines (C139 and C241, one for each protein domain), two stable disulfide bridges (C399–C402, C303–C312, both in the PAPS domain), and two unstable disulfides (C39–C50; C440–C464). Whereas the C39–C50 unstable disulfide is located in the MPTb domain and appears to have no catalytic relevance, a cysteine-based redox switch may involve formation and breakdown of a disulfide between C440 and C464 in the PAPS domain.  相似文献   

17.
Hayes CS  Sauer RT 《Molecular cell》2003,12(4):903-911
Cells employ many mechanisms to ensure quality control during protein biosynthesis. Here, we show that, during the pausing of a bacterial ribosome, the mRNA being translated is cleaved at a site within or immediately adjacent to the A site codon. The extent of this A site mRNA cleavage is correlated with the extent of ribosome pausing as assayed by tmRNA-mediated tagging of the nascent polypeptide. Cleavage does not require tmRNA, the ribosomal alarmone (p)ppGpp, or bacterial toxins such as RelE which have been shown to stimulate a similar activity. Translation is required for cleavage, suggesting that the ribosome participates in the reaction in some fashion. When normal protein synthesis is compromised, A site mRNA cleavage and the tmRNA system provide a mechanism for reducing translational errors and the production of aberrant and potentially harmful polypeptides.  相似文献   

18.
S M Janes  J P Klinman 《Biochemistry》1991,30(18):4599-4605
Recent evidence has shown that the active site cofactor in bovine serum amine oxidase (BSAO) is 2,4,5-trihydroxyphenylalanine or 6-hydroxydopa [Janes et al. (1990) Science 248, 981]. However, much ambiguity remains regarding the mechanism of the enzymatic reaction. Conflicting data exist for both the number of functional active sites in the dimeric enzyme and for the oxygen dependence of product release. To resolve these questions, a new method has been developed for the purification of BSAO which leads to the isolation of specific activity greater than or equal to 0.4 unit/mg of enzyme in 2-3 weeks. This highly active enzyme has been used to quantitate both aldehyde and ammonia release in the reductive half-reaction. Anaerobic incubation of enzyme and substrate resulted in the production of 2 mol of aldehyde/mol of enzyme, indicating the presence of a cofactor at each enzyme subunit. As anticipated for an aminotransferase reaction, no ammonia release was detected under comparable conditions. Active site titration of enzyme samples of varying specific activity with phenylhydrazine extrapolates to 1 mol of inhibitor/mol of enzyme subunit for BSAO of specific activity = 0.48 unit/mg. These findings contrast with numerous, previous reports of only one functional cofactor per enzyme dimer in copper amine oxidases.  相似文献   

19.
Palmityl-substituted sepharose 4B has been used for adsorptive immobilization of heat-denatured carbonic anhydrase. The native form of this enzyme does not show any affinity for binding to this hydrophobic support. However, through the process of denaturation-renaturation performed by heating and subsequent cooling of an enzyme solution in the presence of the matrix, it was possible to obtain a catalytically active immobilized preparation, which was used successfully in continuous catalytic transformations. It is suggested that this simple procedure may provide a convenient method of immobilization for proteins, which are not normally adsorbed on hydrophobic supports.  相似文献   

20.
Creatine kinase (CK) catalyzes the reversible phosphorylation of the guanidine substrate, creatine, by MgATP. Although several X-ray crystal structures of various isoforms of creatine kinase have been published, the detailed catalytic mechanism remains unresolved. A crystal structure of the CK homologue, arginine kinase (AK), complexed with the transition-state analogue (arginine-nitrate-ADP), has revealed two carboxylate amino acid residues (Glu225 and Glu314) within 2.8 A of the proposed transphosphorylation site. These two residues are the putative catalytic groups that may promote nucleophilic attack by the guanidine amino group on the gamma-phosphate of ATP. From primary sequence alignments of arginine kinases and creatine kinases, we have identified two homologous creatine kinase acidic amino acid residues (Glu232 and Asp326), and these were targeted for examination of their potential roles in the CK mechanism. Using site-directed mutagenesis, we have made several substitutions at these two positions. The results indicate that of these two residues the Glu232 is the likely catalytic residue while Asp326 likely performs a role in properly aligning substrates for catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号