首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The validity of the enzymatic assay of procollagenase within crude biological media containing also the collagenase inhibitor TIMP (tissue inhibitor of metalloproteinases) as well as other (pro)metalloproteinases and sometimes, metalloproteinase-TIMP complexes, has been reevaluated. To be enzymatically assayed, procollagenase has to be activated. The standard activation procedures by either trypsin or 4-aminophenylmercuric acetate (APMA) both allow an optimal recovery of collagenase from procollagenase when the media do not contain free TIMP. However, they do not destroy TIMP nor do they reactivate the collagenase present in enzyme-inhibitor complexes. Therefore, the collagenase formed by the activation of procollagenase in the presence of free TIMP is immediately inactivated by binding to the inhibitor. As a result, both the bound collagenase and TIMP can no longer be assayed by enzymatic methods. An optimal recovery of collagenase can, however, be obtained if free TIMP is neutralized by the binding of other tissue metalloproteinases (such as those present in culture media of rabbit bone marrow-derived macrophages) prior to the activation and assay of procollagenase. Similarly, it is possible to recover under an active free form a large part of the TIMP present in collagenase- (or other metalloproteinase-)TIMP complexes by heating the complexes at acid pH under conditions which inactivate the collagenase.  相似文献   

2.
Degradation of fibrillar collagens is a central process in joint destruction in rheumatoid arthritis. Collagenase responsible for the collagenolysis has been immunolocalized on the extracellular matrix components at the cartilage/pannus junction in the rheumatoid joint, but very little is known about cellular source of the proteinase. In this paper monospecific antibodies against collagenase and tissue inhibitor of metalloproteinases (TIMP) were applied to rheumatoid and normal synovium to identify cells synthesizing and secreting the enzyme and its inhibitor. By treating the specimens with the monovalent ionophore, monensin, both collagenase and TIMP could be immunolocalized in hyperplastic synovial lining cells in rheumatoid synovium, but not in the cells of normal synovium. Dual immunolocalization studies demonstrated that the majority of the lining cells (approximately 64%) produce both collagenase and TIMP, while approximately 3% of the cells were positive only for collagenase, and 11% only for TIMP. Neither collagenase nor TIMP was immunolocalized on the extracellular matrix components in the synovia examined. These data suggest that synovial lining cells in rheumatoid arthritis secrete both collagenase and TIMP into the joint cavity. The role of collagenase in joint destruction in rheumatoid arthritis is discussed with reference to the regulation of the activity by TIMP.  相似文献   

3.
Rabbit VX2 tumour cells in culture produced a collagenolytic activity which was shown to be immunologically identical to collagenase from rabbit articular chondrocytes and bone. VX2 cells degraded type I collagen films spontaneously and did not produce detectable levels of the tissue inhibitor of metalloproteinases (TIMP). Chondrocytes, however, required both stimulation of collagenase synthesis and activation to effect lysis and were observed to make appreciable amounts of TIMP. The degradation of type I collagen films by VX2 tumour cells was significantly inhibited by both a specific antibody to rabbit collagenase and by purified TIMP, thus demonstrating the unequivocal role of collagenase in this model system.  相似文献   

4.
Connective-tissue cells produce a family of metalloproteinases which, once activated, can degrade all the components of the extracellular matrix. These potent enzymes are all inhibited by the tissue inhibitor of metalloproteinases (TIMP), and it was thought that the levels of this inhibitor controlled the extracellular activity of these enzymes. We recently detected a new metalloproteinase inhibitor present in culture media of WI-38 fibroblasts. The inhibitor, named 'large inhibitor of metalloproteinases' (LIMP), can be separated from TIMP by gel filtration on Ultrogel AcA 44, where it is eluted with an apparent Mr of 76,000. A portion of this inhibitor-containing peak binds to concanavalin A-Sepharose, indicating that at least some of the inhibitor contains carbohydrate. LIMP inhibits collagenase (MMP-1), stromelysin (MMP-3) and gelatinase (MMP-2) in a dose-dependent fashion. Collagenase forms tight-binding complexes with LIMP, which can be separated from free collagenase on gel-filtration columns. The complex is eluted with Mr 81,600 (AcA 44) or Mr 60,000 (Superose 12). This complex is larger than that formed between collagenase and TIMP, which has Mr 52,800 (Aca 44) or 41,000 (Superose 12). Polyclonal antibody to TIMP does not recognize LIMP by immunoblotting, and will not block the inhibition of collagenase by LIMP, showing that LIMP is not a multimeric form of TIMP. The role of this new inhibitor in connective-tissue breakdown studies and its relationship to previously described inhibitors of metalloproteinases is discussed.  相似文献   

5.
1. Pure rabbit bone metalloproteinase inhibitor (TIMP) bound tightly to pure rabbit bone collagenase with an apparent Kd of 1.4 X 10(-10) M. 2. The molecular weight of the enzyme-inhibitor complex was found to be 54 000, but no enzyme activity could be recovered from the complex after treatment with either mercurials or proteinases. The complex thus differed from latent collagenase in terms of size, susceptibility to mercurials and behaviour on concanavalin A-Sepharose. 3. The interaction of the purified components was compared with that of crude collagenase and crude inhibitor in culture medium. Mercurial treatment partially reversed the inhibition in the crude system, but not when the purified components were used. 4. The significance of the results is discussed in relation to the extracellular control of the activity of collagenase.  相似文献   

6.
7.
Remodeled pulmonary arteries return to normal structural conditions after the increase in pulmonary artery flow resistance is reversed. We studied whether proteolysis of extracellular matrix proteins and apoptosis occur during reversal of remodeling produced by chronic hypoxia in the rat. Main pulmonary arteries were removed at different times during a 10-day period of exposure to 10% O2 and 14 days after return to air. Content and rates of degradation of collagen and elastin as well as immunoreactive collagenase in tissue and isolated mast cells were measured. Immunoblots for collagenase and tissue inhibitor of metalloproteinases (TIMP) were performed. Apoptosis was assessed by cleavage of DNA and TUNEL assay. Excess collagen and elastin present at 10 days of hypoxia decreased to near normal levels after 3-5 days of air. Transient increases in collagenolytic and elastolytic enzyme activities accompanied the rapid decrease in matrix proteins. Mast cells containing collagenase accumulated in remodeled pulmonary arteries, and the active form of collagenase appeared at the time of peak proteolytic activity. TIMP increased during remodeling. Apoptosis was maximal 3 days after return to air. Our results suggest that activation of enzymes, which degrade matrix proteins, and apoptosis play a role in resolution of vascular remodeling.  相似文献   

8.
9.
Tissue inhibitor of metalloproteinases (TIMP) is the major inhibitor of collagenase, gelatinase, proteoglycanase, stromelysin, and metalloelastases. An imbalance between proteases and inhibitors has been implicated in numerous disease processes including tumor invasion, rheumatoid arthritis, emphysema, and aortic aneurysm disease. The purpose of this investigation was to develop a polyclonal antibody to recombinant TIMP and establish an immunoassay to measure immunoreactive protein in normal and diseased tissues. A polyclonal antibody was produced in rabbit against recombinant human TIMP which was characterized and used to establish a radioimmunoassay. The assay was used to measure immunoreactive protein in fibroblast conditioned medium, human serum, and aortic extracts. There was more immunoreactive TIMP in matrix associated urea extracts than soluble salt extracts from human aorta, suggesting that TIMP is matrix associated. The sensitivity of the assay enables the specific measurement of this inhibitor in serum, fibroblast culture medium, and tissue extracts.  相似文献   

10.
11.
Chick bone collagenase inhibitor and latency of collagenase   总被引:3,自引:0,他引:3  
Collagenase and collagenase inhibitor were isolated from the culture fluid of embryonic chick bone. The inhibitor, separated as a high molecular weight aggregate (160,000–200,000 daltons) during gel filtration in 1M NaCl, dissociated in 6M urea to species of approx 25,000 daltons. The inhibition of collagenase activity by the addition of inhibitor was not reversed by the addition of trypsin or p-aminophenylmercuric acetate. However, isolated inhibitor alone was inactivated by treatment with either trypsin or p-aminophenylmercuric acetate. The results suggest that the latent form of chick bone collagenase is a proenzyme which converts into an active form without a detectable change in molecular weight and that this occurs after the inactivation of collagenase inhibitor.  相似文献   

12.
The matrix metalloproteinases are a family of enzymes involved in the turnover of the connective tissues. The regulation of these enzymes is complex, involving the control of synthesis, the activation of proenzyme forms and the presence of specific inhibitors. Retinoids have been reported to inhibit the production of metalloproteinases by human and rabbit synovial fibroblasts and by human skin fibroblasts. The production of the highly specific tissue inhibitor of metalloproteinases (TIMP) by connective tissue cells may be crucial in the regulation of connective tissue breakdown and this present study was undertaken to determine if retinoic acid (RA) could modulate TIMP and collagenase production by synovial fibroblasts. The results show that RA at concentrations from 10(-7) to 10(-5) M significantly stimulated the secretion of TIMP by two of three human synovial cell lines. The effect of mononuclear cell factor (MCF) on TIMP and collagenase levels was also investigated. The apparent reduction of collagenase levels in the presence of RA, could result from a failure to accurately measure this enzyme in the presence of increased levels of TIMP.  相似文献   

13.
In this report we describe the purification of bovine interstitial collagenase and provide information on its substrate specificity, kinetic parameters of catalytic activity, and amino terminal protein sequence. In addition, we present a simplified protocol for the purification of bovine tissue inhibitor of metalloproteinases (TIMP). Collagenase was purified by sequential chromatography through heparin-Sepharose, DEAE-Sepharose, and green-agarose, resulting in a product that was greater than 95% pure as judged by polyacrylamide electrophoresis. Typical of other interstitial collagenases, the isolated bovine protein was activated by protease and organomercurial treatment. It also demonstrated a kinetics and substrate specificity similar to those of human collagenase. TIMP was purified by sequential chromatography through heparin-Sepharose and DEAE-Sepharose followed by reverse-phase HPLC. The purified protein had a size, N-terminal sequence, and inhibitor activity similar to those of other mammalian TIMPs. Partial peptide sequences suggested that bovine collagenase and TIMP have strong sequence homology to their human homologues.  相似文献   

14.
Production of a 92-kDa gelatinase/type IV collagenase and tissue inhibitor of metalloproteinases (TIMP) was investigated with human sarcoma cell lines. Among the cytokines and growth factors examined, only human recombinant tumor necrosis factor alpha (TNF alpha) induced and stimulated the proteinase with concomitant increase in TIMP expression, but matrix metalloproteinase 2 (72-kDa gelatinase/type IV collagenase) expression was unchanged. These data suggest that gene expression of the two metalloproteinases is regulated in a different fashion and TNF alpha may be important to allow cancer cells to be more invasive and metastatic.  相似文献   

15.
Fibroblast heterogeneity in collagenolytic response to cyclosporine.   总被引:4,自引:0,他引:4  
To investigate the mechanism of cyclosporine (CS)-induced fibrotic gingival enlargement, the effect of CS on the collagenolytic activities of 14 different human gingival fibroblast strains derived from healthy individuals with non-inflammed gingiva was examined in vitro. There was marked heterogeneity among individuals in basal levels of collagenase activity, and there was also variation among the subpopulations derived from one strain. Fibroblasts from different individuals also varied markedly in their collagenolytic response to CS (0.1 to 0.75 micrograms/ml). In most strains, CS decreased collagenase activity, but in some, the drug caused no change or significantly increased activities. In most of the subpopulations CS significantly decreased collagenolytic activity. Two of the fibroblasts strains and the subpopulations described above were examined for the production of immunoreactive collagenase and tissue inhibitor of metalloproteinase (TIMP). The two strains made similar amounts of collagenase, but differed markedly in TIMP levels; CS affected their collagenase production differently but had similar effects on TIMP. Among the subpopulations there was variation in the production of collagenase, although none made detectable levels of TIMP; they also varied in the production of both proteins in response to CS. In two of the subpopulations and in both strains at some concentrations, the effect of CS on the relative levels of collagenase and TIMP could account for the decreased collagenase activity; i.e., the level of collagenase was unchanged or decreased, and TIMP production was unchanged or increased. This study demonstrates the variation among individuals as well as intrastrain heterogeneity of human gingival fibroblasts with regard to collagenase activity and the production of collagenase and TIMP. The heterogeneity of the collagenolytic response of different gingival fibroblast strains and their subpopulations to CS treatment may partly explain the susceptibility of only some individuals to CS-induced gingival enlargement.  相似文献   

16.
Human 92- and 72-kilodalton type IV collagenases are elastases.   总被引:30,自引:0,他引:30  
Elastin is critical to the structural integrity of a variety of connective tissues. Only a select group of enzymes has thus far been identified capable of cleaving insoluble elastin. Recently, we observed that human alveolar macrophages secrete elastase activity that is largely inhibited by the tissue inhibitor of metalloproteinases (TIMP). This finding suggested that one or more of the metalloproteinases released by alveolar macrophages has elastase activity. Accordingly, we tested pure human interstitial collagenase, stromelysin, 92-kDa type IV collagenase, and 72-kDa type IV collagenase for elastolytic activity using kappa-elastin zymography and insoluble 3H-labeled elastin. The 92- and 72-kDa type IV collagenases were found to be elastolytic in both assay systems. A recombinant preparation of 92-kDa type IV collagenase with gelatinolytic activity was also found to be elastolytic. Organomercurial activation was essential to detect elastolytic activity of the native 92- and 72-kDa type IV collagenases and enhanced the elastase activity of the recombinant 92-kDa enzyme. On a molar basis the recombinant 92-kDa type IV collagenase was approximately 30% as active as human leukocyte elastase in solubilizing 3H-labeled elastin. Exogenously added TIMP in significant molar excess abolished the elastase activity of the 92- and 72-kDa type IV collagenases. Stromelysin and interstitial collagenase showed no significant elastolytic activity, although both were catalytically active against susceptible substrates. Conditioned media from cultures of human mononuclear phagocytes containing the 92-kDa enzyme produced a distinct zone of lysis in the kappa-elastin zymograms at this molecular mass. These results definitively extend the spectrum of human proteinases with elastolytic activity to metalloproteinases and suggest the enzymatic basis for elastase activity observed with certain cell types such as human alveolar macrophages.  相似文献   

17.
1. The immunological cross-reactivity between rabbit collagenases from a variety of normal and pathological sources was examined. The specific antibody raised against collagenase secreted from normal rabbit synovial fibroblasts gave reactions of complete identity with collagenases secreted from fibroblasts derived from rabbit skin, and from synovium from experimentally arthritic rabbits. 2. The rabbit fibroblast collagenase was immunologically identical with collagenases obtained from the organ culture medium of normal rabbit skin, synovium, ear fibrocartilage and subchondral bone. 3. Collagenases from the culture media of normal rabbit synovium and from hyperplastic synovium of rabbits made experimentally arthritic were identical. 4. The collagenase secreted from rabbit fibroblasts gave a reaction completely identical with that of a collagenase extracted directly from a rabbit carcinoma. 5. IgG (immunoglobulin G) from a specific antiserum to rabbit fibroblast collagenase was a potent inhibitor of the collagenases obtained from the culture media of the various rabbit cells and tissues. 6. Collagenases from human synovium and from mouse macrophages and bone were neither precipitated nor inhibited by antibodies to rabbit collagenase. 7. No immunoreactive material was found in lysates of rabbit polymorphonuclear leucocyte granules with the specific antisera to rabbit fibroblast collagenase. No evidence for inactive forms of rabbit collagenase in lysates of the rabbit synovial fibroblasts could be found, either by double immunodiffusion against the specific collagenase, or by displacement of active enzyme from inhibition by the IgG.  相似文献   

18.
On purification, human fibroblast collagenase breaks down into two major forms (Mr22,000 and Mr 27,000) and one minor form (Mr 25,000). The most likely mechanism is autolysis, although the presence of contaminating enzymes cannot be excluded. From N-terminal sequencing studies, the 22,000-Mr fragment contains the active site; differential binding to concanavalin A shows the 25,000-Mr fragment is a glycosylated form of the 22,000-Mr fragment. These low-Mr forms can be separated by Zn2+-chelate chromatography. An activity profile of this column, combined with data from substrate gels, indicates no activity against collagen in the 22,000-Mr and 25,000-Mr forms, but rather, activity casein and gelatin. The 27,000-Mr form has no activity. The 22,000/25,000-Mr form can act as an activator for collagenase in a similar way to that reported for stromelysin. The activity of the 22,000/25,000-Mr form is not inhibited by the tissue inhibitor of metalloproteinases (TIMP). The 27,000-Mr C-terminal part of the collagenase molecule therefore appears to be important in maintaining the substrate-specificity of the enzyme, and also plays a role in the binding of TIMP.  相似文献   

19.
Primary and passaged human synovial fibroblasts isolated from rheumatoid pannus were treated with recombinant interleukin-1 (IL-1) alpha or beta, tumor necrosis factor-alpha (TNF), or phorbol myristate acetate (PMA) to determine the effects of these stimuli on the relative expression of stromelysin, collagenase, and tissue inhibitor of metalloproteinases (TIMP). The steady-state mRNA levels for these genes and glyceraldehyde-3-phosphate dehydrogenase were determined on Northern blots. Immunoblot analyses of the conditioned media using monoclonal antibodies generated against recombinant human stromelysin, collagenase, or TIMP showed that protein levels reflected the corresponding steady-state mRNA levels. The results revealed that 1) stromelysin and collagenase were not always coordinately expressed; 2) IL-1 was more potent than TNF or PMA in the induction of stromelysin expression; 3) neither IL-1 nor TNF significantly affected TIMP expression; 4) PMA induced both metalloproteinase and TIMP expression; and 5) the combination of IL-1 plus TNF had a synergistic effect on stromelysin expression. Dose response and time course experiments demonstrated that the synergistic effect of IL-1 plus TNF occurred at saturating concentrations of each cytokine and lasted for 7 days. In summary, the ability of IL-1 and TNF to preferentially induce stromelysin and collagenase expression, versus TIMP, may define a pivotal role for these cytokines in the pathogenesis of rheumatoid arthritis.  相似文献   

20.
The atrophy of extracellular matrix is a common event during the aging of connective tissues. In this study, we tested the hypothesis that the altered ability of senescent cells to be modulated by serum growth factors correlated with a loss of regulation of collagenase synthesis. We examined the levels of immunoreactive procollagenase and collagenase inhibitor (the tissue inhibitor of metalloproteinases, TIMP) associated with young and senescent fibroblasts cultured in vitro. Young fibroblasts cultured in low (0.5%) concentrations of fetal bovine serum respond to increased (10%) serum by increasing levels of procollagenase and TIMP beginning 4.0 h after serum stimulation. In contrast, senescent fibroblasts constitutively produce relatively high levels of procollagenase even when cultured in low levels of serum and do not respond to serum stimulation by increasing procollagenase synthesis. In addition, senescent fibroblasts constitutively express a relatively small amount of TIMP which is not induced upon serum stimulation. This altered expression of collagenase and TIMP appears unique to the senescent phenotype and not merely a result of growth inhibition, since young cells growth arrested by density-dependent growth inhibition displayed a temporal pattern of procollagenase and TIMP expression upon serum stimulation similar to that of subconfluent young cultures. An assay of net collagenase activity revealed a greater than 20-fold elevation of activity in trypsin-activated extracts from senescent versus young fibroblasts when cultured in a low concentration of fetal bovine serum. These results demonstrate for the first time a direct correlation between alterations in the molecular pathways regulating connective tissue homeostasis and those of replicative senescence. The increased collagenolytic activity of senescent compared to young fibroblasts cultured in the presence of a low serum concentration suggests that aging fibroblasts may become increasingly fibroclastic causing many of the age-associated alterations in dermal collagen observed during aging in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号