首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Papilio phylogeny based on mitochondrial cytochrome oxidase I and II genes   总被引:3,自引:0,他引:3  
Butterflies of the genus Papilio have served as the basis for numerous studies in insect physiology, genetics, and ecology. However, phylogenetic work on relationships among major lineages in the genus has been limited and inconclusive. We have sequenced 2.3 kb of DNA from the mitochondrial cytochrome oxidase I and II genes (COI and COII) for 23 Papilio taxa and two outgroups, Pachliopta neptunus and Eurytides marcellus, in order to assess the potential of these genes for use in Papilio phylogenetics and to examine patterns of gene evolution across a broad taxonomic range. Nucleotide and amino acid variation is distributed heterogeneously, both within and between genes. Structural features of the proteins are not always reliable predictors of variation. In a combined analysis, these sequences support a nearly fully resolved topology within subgenera and species groups, though higher level relationships among species groups require additional study. The most noteworthy findings are that neither Papilio alexanor nor P. xuthus belongs in the machaon group and that the subgenus Pterourus is paraphyletic with respect to the subgenus Pyrrhosticta. We leave relationships among members of the phorcas species group as a trichotomy. These two protein coding genes, particularly COI, show excellent performance in resolving relationships at the level of species and species groups among Papilionidae. We strongly endorse a similar approach for future studies aimed at these levels.  相似文献   

2.
The slipper lobsters belong to the family Scyllaridae which contains a total of 20 genera and 89 species distributed across four subfamilies (Arctidinae, Ibacinae, Scyllarinae, and Theninae). We have collected nucleotide sequence data from regions of five different genes (16S, 18S, COI, 28S, H3) to estimate phylogenetic relationships among 54 species from the Scyllaridae with a focus on the species rich subfamily Scyllarinae. We have included in our analyses at least one representative from all 20 genera in the Scyllaridae and 35 of the 52 species within the Scyllarinae. Our resulting phylogenetic estimate shows the subfamilies are monophyletic, except for Ibacinae, which has paraphyletic relationships among genera. Many of the genera within the Scyllarinae form non-monophyletic groups, while the genera from all other subfamilies form well supported clades. We discuss the implications of this history on the evolution of morphological characters and ecological transitions (nearshore vs. offshore) within the slipper lobsters. Finally, we identify, through ancestral state character reconstructions, key morphological features diagnostic of the major clades of diversity within the Scyllaridae and relate this character evolution to current taxonomy and classification.  相似文献   

3.
Molecular phylogeny and biogeography of the marine shrimp Penaeus   总被引:10,自引:0,他引:10  
The evolutionary relationships among 13 species representing all six subgenera of the shrimp genus Penaeus were examined using 558 bp of mitochondrial (mt) DNA from the cytochrome oxidase subunit I gene. Analyses of this sequence revealed high genetic divergence between species (d = 8-24%), a finding which contrasts with previous work, which indicated that genetic diversity, based on electrophoretic analysis of allozymes, was extremely low in Penaeus. Three tree-building methods (maximum parsimony, neighbor joining, and maximum likelihood) were concordant in indicating that current subgenera assignments do not reflect evolutionary partitions within the genus Penaeus. While the molecular phylogenies cast doubt on the validity of subgenera, the observed relationships are concordant with biogeographic boundaries across the tropical range of Penaeus. Both the western Atlantic and eastern Pacific contain monophyletic species pairs which cluster together in all analyses. The Indo-Pacific contains a putative basal taxa (P. indicus), the deepest mtDNA lineages, and the highest diversity, including representatives of all three primary lineages observed in Penaeus. These data are consistent with the suggestion by Dall et al. (1990) that Penaeus arose in the Indo-Pacific and radiated eastward and westward to account for the current circumtropical distribution of the genus. This phylogenetic framework for Penaeus will enhance the scientific foundations for wildlife resource management and breeding experiments (hybridization and related manipulations) designed to improve the commercial value of captive strains.  相似文献   

4.
We conducted a molecular study intending to derive an estimate of the relationships within the genus Bombus (bumble bees) by comparing the mitochondrial cytochrome b and cytochrome oxidase I (COI) genes from 19 species, spanning 10 of approximately 16 European subgenera and 3 subgenera from North and South America. Our trees differ from the most recent classifications of bumble bees. Although bootstrap values for deep branches are low, our sequences show significant data structure and low homoplasy, and all trees share some groups and patterns. In all cases, the subgenus Bombus s. str. clusters among the most derived bumble bees, contrary to other molecular studies. In all trees, B. funebris is the sister taxon of B. robustus, and in five of the six trees, B. wurflenii is the sister taxon to this clade. B. nevadensis is basal to the other species in the analysis of the cytochrome b gene, but appears to be among the most derived according to the analysis of the COI region. The species representing the subgenera Thoracobombus and Fervidobombus are consistently among the earliest diverged. Species that appear in very different positions in different trees are B. nevadensis, B. mesomelas, B. balteatus, and B. hyperboreus. All subgenera with two representatives in our analysis are apparently monophyletic except Fervidobombus, Melanobombus, and Pyrobombus. The groups formed by pocket makers and non-pocket makers within Bombus also appear to be paraphyletic, and therefore some subgenera may not accurately reflect phylogeny.  相似文献   

5.
Fruit flies of the genus Bactrocera (Diptera: Tephritidae) are one of the major economically important insects in Asia and Australia. Little attention has been given to analyses of molecular phylogenetic relationships among Bactrocera subgenera. By using mitochondrial cytochrome oxidase I gene (COI) sequences, the phylogenetic relationships among four subgenera, Asiadacus, Bactrocera, Hemigymnodacus, and Zeugodacus, were investigated. Nucleotide diversity within subgenera ranged from 11.7 to 12.4%, and the net divergence among subgenera ranged from 11.2 to 15.7%. Phylogenetic trees calculated from both maximum parsimony and neighbor-joining phylogenetic analysis methods were highly congruent in terms of tree topologies. Phylogenetic analysis of mitochondrial COI sequences suggests that tephritid fruit fly species, which attack cucurbit plants, that is, Asiadacus, Hemigymnodacus and Zeugodacus, were more closely related to each other than to fruit fly species of the subgenus Bactrocera, which attack plants of numerous families. Our data supports previous classification of Bactrocera based on morphological characters. However, the phylogenetic tree showed the polyphyletic of fruit flies in subgenus Zeugodacus. Possible causes of speciation among fruit flies species in this genus were also discussed.  相似文献   

6.
The evolutionary history of deep-sea shrimp (Caridea: Bresiliidae) inhabiting deep-sea hydrothermal vent and hydrocarbon seep environments was assessed using the mitochondrial Cytochrome c Oxidase subunit I (COI) gene (600 bp). Phylogenetic analyses (parsimony, likelihood, and neighbor-joining) recovered three distinct clades (A, Rimicaris/Chorocaris/Opaepele; B, Alvinocaris; and C, Mirocaris) consistent with higher level taxonomy based on morphology. However, robust phylogenetic results suggested that Chorocaris is paraphyletic and that Mirocaris fortunata and M. keldyshi may not be genetically distinct. A Kishino-Hasegawa likelihood approach was used to test alternative phylogenetic hypotheses based on biogeography and morphology. Evolutionary relationships of vent-endemic shrimp species did not appear to be correlated either with their extant biogeographic distribution or with the history of sea floor spreading. Additionally, COI data suggested that these vent-endemic organisms are not remnants of a Mesozoic vent assemblage; instead, they radiated in the Miocene.  相似文献   

7.
Approximately 5% of the known species-level diversity of Diptera belongs to the Muscoidea with its approximately 7000 described species. Despite including some of the most abundant and well known flies, the phylogenetic relationships within this superfamily are poorly understood. Previous attempts at reconstructing the relationships based on morphology and relatively small molecular data sets were only moderately successful. Here, we use molecular data for 127 exemplar species of the Muscoidea, two species from the Hippoboscoidea, ten species representing the Oestroidea and seven outgroup species from four acalyptrate superfamilies. Four mitochondrial genes 12S, 16S, COI, and Cytb, and four nuclear genes 18S, 28S, Ef1a, and CAD are used to reconstruct the relationships within the Muscoidea. The length-variable genes were aligned using a guide tree that was based on the protein-encoding genes and the indel-free sections of the ribosomal genes. We found that, based on topological considerations, this guide tree was a significant improvement over the default guide trees generated by ClustalX. The data matrix was analyzed using maximum parsimony (MP) and maximum likelihood (ML) and yielded very similar tree topologies. The Calyptratae are monophyletic and the Hippoboscoidea are the sister group to the remaining calyptrates (MP). The Muscoidea are paraphyletic with a monophyletic Oestroidea nested within the Muscoidea as sister group to Anthomyiidae+Scathophagidae. The monophyly of three of the four recognized families in the Muscoidea is confirmed: the Fanniidae, Muscidae, and Scathophagidae. However, the Anthomyiidae are possibly paraphyletic. Within the Oestroidea, the Sarcophagidae and Tachinidae are sister groups and the Calliphoridae are paraphyletic.  相似文献   

8.
Durvillaea (southern bull-kelp) is an economically and ecologically important brown algal genus that dominates many exposed, rocky coasts in the cold-temperate Southern Hemisphere. Of its five currently-recognized species, four are non-buoyant and restricted to the south-western Pacific, whereas one is both buoyant and widely distributed. Durvillaea has had an unsettled taxonomic history. Although its position within the brown algae (Phaeophyceae) has now been largely resolved through the use of molecular techniques, the taxonomic status of several Durvillaea species/morphotypes remains unresolved. Previous molecular phylogenetic studies of phaeophycean taxa have included few Durvillaea samples, and have consequently paid little or no attention to variation within this genus. The current study presents phylogenetic analyses of four genetic markers (mitchondrial: COI; chloroplast: rbcL; and nuclear: 18S and 28S) to resolve phylogenetic relationships within Durvillaea. Results support the monophyly of solid-bladed taxa D. willana, D. potatorum, and D. sp. A (an undescribed species from the Antipodes Islands), whereas the widespread, buoyant D. antarctica is paraphyletic, with solid-bladed D.chathamensis placed sister to a D. antarctica clade from northern NZ but within D. antarctica sensu lato. The phylogenetic and ecological diversity detected within D. antarctica indicate that it is a species complex of five deeply divergent clades. Under a phylogenetic species concept, Durvillaea can be interpreted as a complex of nine distinct evolutionary lineages, only one of which has an intercontinental distribution ('subantarctic'D. antarctica).  相似文献   

9.
The phylogeny of groups within Gobioidei is examined with molecular sequence data. Gobioidei is a speciose, morphologically diverse group of teleost fishes, most of which are small, benthic, and marine. Efforts to hypothesize relationships among the gobioid groups have been hampered by the prevalence of reductive evolution among goby species; such reduction can make identification of informative morphological characters particularly difficult. Gobies have been variously grouped into two to nine families, several with included subfamilies, but most existing taxonomies are not phylogenetic and few cladistic hypotheses of relationships among goby groups have been advanced. In this study, representatives of eight of the nine gobioid familes (Eleotridae, Odontobutidae, Xenisthmidae, Gobiidae, Kraemeriidae, Schindleriidae, Microdesmidae, and Ptereleotridae), selected to sample broadly from the range of goby diversity, were examined. Complete sequence from the mitochondrial ND1, ND2, and COI genes (3573 bp) was used in a cladistic parsimony analysis to hypothesize relationships among the gobioid groups. A single most parsimonious topology was obtained, with decay indices indicating strong support for most nodes. Major phylogenetic conclusions include that Xenisthmidae is part of Eleotridae, and Eleotridae is paraphyletic with respect to a clade composed of Gobiidae, Microdesmidae, Ptereleotridae, Kraemeriidae, and Schindleriidae. Within this five-family clade, two clades are recovered. One includes Gobionellinae, which is paraphyletic with respect to Kraemeriidae, Sicydiinae, Oxudercinae, and Amblyopinae. The other contains Gobiinae, also paraphyletic, and including Microdesmidae, Ptereleotridae, and Schindleriidae. Previous morphological evidence for goby groupings is discussed; the phylogenetic hypothesis indicates that the morphological reduction observed in many goby species has been derived several times independently.  相似文献   

10.
ITS sequence data resolve higher level relationships among the eucalypts.   总被引:2,自引:0,他引:2  
Sequences of the internal transcribed spacer (ITS) region of the nuclear ribosomal DNA were obtained for 35 species of Eucalyptus s.s. and seven taxa representing five outgroup genera (Allosyncarpia, Angophora, Arillastrum, Corymbia, and Stockwellia). The sequences were analyzed cladistically. The data distinguished clearly between the two major subgenera of Eucalyptus s.s. (Symphyomyrtus and Monocalyptus) but indicated that subgenus Eudesmia may be paraphyletic. ITS sequence data demonstrated the potential to resolve relationships between sections within subgenus Symphyomyrtus. Within sections, however, taxa were poorly differentiated. At the generic level, Corymbia appeared to be paraphyletic due to the exclusion of Angophora. The positions of Allosyncarpia and Arillastrum relative to the ingroup remain unresolved. ITS sequence data may prove valuable for resolving other phylogenetic relationships at higher taxonomic levels within Eucalyptus.  相似文献   

11.
We inferred the phylogeny of 21 species and subspecies of ticks from the subfamilies Rhipicephalinae and Hyalomminae using cytochrome c oxidase subunit I (COI) and 12S rRNA mitochondrial gene sequences. Two members of the subfamily Haemaphysalinae were used for outgroup reference. The largest rhipicephaline genus, Rhipicephalus, was represented by ticks from six of the species groups, the second largest genus, Dermacentor, by species from two of three of its subgenera, and the genus Boophilus by 3 of its 5 species. We analyzed the 12S and COI sequences separately and together; statistically significant incongruence between the 12S rDNA and the COI sequences was not detected in the combined dataset using the incongruence length difference test. The combined dataset provided greater phylogenetic resolution than the individual datasets, and although the 12S rDNA data had only 25% of the parsimony-informative characters, it provided half of the total partitioned Bremer support for the combined dataset. We present the first hypothesis of phylogenetic relationships among some species groups of Rhipicephalus but our most controversial result was that the genus Rhipicephalus is apparently paraphyletic, unless species of Boophilus are included in it. The species of Rhipicephalus most closely related to Boophilus spp. were from the R. pravus and R. evertsi species groups, which may implicate an African origin for this important group of ticks.  相似文献   

12.
The evolutionary relationships among 13 species representing all six subgenera of the shrimp genusPenaeuswere examined using 558 bp of mitochondrial (mt) DNA from the cytochrome oxidase subunit I gene. Analyses of this sequence revealed high genetic divergence between species (d = 8–24%), a finding which contrasts with previous work, which indicated that genetic diversity, based on electrophoretic analysis of allozymes, was extremely low inPenaeus.Three tree-building methods (maximum parsimony, neighbor joining, and maximum likelihood) were concordant in indicating that current subgenera assignments do not reflect evolutionary partitions within the genusPenaeus.While the molecular phylogenies cast doubt on the validity of subgenera, the observed relationships are concordant with biogeographic boundaries across the tropical range ofPenaeus.Both the western Atlantic and eastern Pacific contain monophyletic species pairs which cluster together in all analyses. The Indo-Pacific contains a putative basal taxa (P. indicus), the deepest mtDNA lineages, and the highest diversity, including representatives of all three primary lineages observed inPenaeus.These data are consistent with the suggestion by Dallet al.(1990) thatPenaeusarose in the Indo-Pacific and radiated eastward and westward to account for the current circumtropical distribution of the genus. This phylogenetic framework forPenaeuswill enhance the scientific foundations for wildlife resource management and breeding experiments (hybridization and related manipulations) designed to improve the commercial value of captive strains.  相似文献   

13.
Several members of the dipteran family Tephritdae are serious pests because females lay eggs in ripening fruit. The genus Bactrocera is one of the largest within the family with over 500 described species arranged in 28 subgenera. The phylogenetic relationships among the various species and subgenera, and the monophyly of specific groups have not been examined using a rigorous phylogenetic analysis. Therefore, phylogenetic relationships among 24 Bactrocera species belonging to 9 subgenera were inferred from DNA sequence of portions of the mitochondrial 16S rRNA, cytochrome oxidase II, tRNA(Lys), and tRNA(Asp) genes. Two morphological characters that traditionally have been used to define the four groups within the subgenus Bactrocera were evaluated in a phylogenetic context by mapping the character states onto the parsimony tree. In addition, the evolutionary trend in male-lure response was evaluated in a phylogenetic context. Maximum parsimony analyses suggested the following relationships: (1) the genus Bactrocera is monophyletic, (2) the subgenus B. (Zeugodacus) is paraphyletic, (3) the subgenus B. (Daculus) is a sister group to subgenus B. (Bactrocera), and (4) the subgenus B. (Bactrocera) is monophyletic. The mapping analyses suggested that the morphological characters exhibit a simple evolutionary transition from one character state to another. Male-lure response was identified as being a labile behavior that has been lost on multiple occasions. Cue-lure response was plesiomorphic to methyl-eugenol response, and the latter has evolved independently within the Bactrocera and Zeugodacus groups of subgenera. The implications of our results for devising a coherent, consolidated classification for Bactrocera is discussed.  相似文献   

14.
Extant bats of the genus Emballonura have a trans-Indian Ocean distribution, with two endemic species restricted to Madagascar, and eight species occurring in mainland southeast Asia and islands in the western Pacific Ocean. Ancestral Emballonura may have been more widespread on continental areas, but no fossil identified to this genus is known from the Old World. Emballonura belongs to the subfamily Emballonurinae, which occurs in the New and Old World. Relationships of all Old World genera of this subfamily, including Emballonura and members of the genera Coleura from Africa and western Indian Ocean islands and Mosia nigrescens from the western Pacific region, are previously unresolved. Using 1833 bp of nuclear and mitochondrial genes, we reconstructed the phylogenetic history of Old World emballonurine bats. We estimated that these lineages diverged around 30 million years ago into two monophyletic sister groups, one represented by the two taxa of Malagasy Emballonura, Coleura and possibly Mosia, and the other by a radiation of Indo-Pacific Emballonura, hence, rendering the genus Emballonura paraphyletic. The fossil record combined with these phylogenetic relationships suggest at least one long-distance dispersal event across the Indian Ocean, presumably of African origin, giving rise to all Indo-Pacific Emballonura species (and possibly Mosia). Cladogenesis of the extant Malagasy taxa took place during the Quaternary giving rise to two vicariant species, E. atrata in the humid east and E. tiavato in the dry west.  相似文献   

15.
We present the first estimate of the phylogenetic relationships among all 916 extant and nine recently extinct species of bats Mammalia: Chiroptera), a group that accounts for almost one-quarter of extant mammalian diversity. This phylogeny was derived by combining 105 estimates of bat phylogenetic relationships published since 1970 using the supertree construction technique of Matrix Representation with Parsimony (MRP). Despite the explosive growth in the number of phylogenetic studies of bats since 1990, phylogenetic relationships in the order have been studied non-randomly. For example, over one-third of all bat systematic studies to date have locused on relationships within Phyllostomidae, whereas relationships within clades such as Kerivoulinae and Murinae have never been studied using cladistic methods. Resolution in the supertree similarly differs among clades: overall resolution is poor (46.4%, of a fully bifurcating solution) but reaches 100% in some groups (e.g. relationships within Mormoopidae). The supertree analysis does not support a recent proposal that Microchiroptera is paraphyletic with respect to Megachiroptera, as the majority of source topologies support microbat monophyly. Although it is not a substitute for comprehensive phylogenetic analyses of primary molecular and morphological data, the bat supertree provides a useful tool for future phylogenetic comparative and macroevolutionary studies. Additionally, it identifies clades that have been little studied, highlights groups within which relationships are controversial, and like all phylogenetic studies, provides preliminary hypotheses that can form starting points for future phylogenetic studies of bats.  相似文献   

16.
Phylogenetic relationships among members of the Aphid genus Brachycaudus (Homoptera: Aphididae) were inferred from partial sequences of mitochondrial cytochrome B oxidase (CytB), two partial fragments of mitochondrial cytochrome C oxidase subunit I (COI) and the internal transcribed spacer II (ITS2) of ribosomal DNA. Twenty-nine species, with several specimens per species, were included, representing all the historically recognized species-groups and subgenera used in the genus except the monospecific subgenus Mordvilkomemor. Results indicate that the genus Brachycaudus is a well-supported monophyletic group. While our results validate the monophyly of subgenera Thuleaphis , Appelia and Brachycaudus s. str. , they reveal two discrepancies in the classical taxonomy. First, the monotypic subgenus Nevskyaphis does not appear valid. Second, the traditionally defined Acaudus subgenus is not monophyletic. On the other hand, our phylogenetic trees corroborate Andreev's recent definition of Acaudus and Brachycaudina. However, they clearly show that the subgenera Prunaphis , Nevskyaphis and Scrophulaphis as defined by this author do not form monophyletic groups. Our results also highlight a highly supported clade that has not been discussed by previous authors; this clade could form a new subgenus, the subgenus Nevskyaphis . Finally, our study shows that molecular data and morphology meet the same limits in delimiting species groups and species themselves. Species groups in which taxonomic treatment is difficult are polytomous. Furthermore, except for one node clustering Brachycaudus s. str . and Appelia, intersubgeneric relationships remain poorly resolved even when several genes are added to the phylogenetic analysis. These results, together with previous studies in other aphid groups suggest that diversification might have been a rapid process in aphids.  相似文献   

17.
In this paper we examine the phylogenetic relationships of the Octopoda utilizing molecular sequence data from the cytochrome c oxidase subunit I (COI) gene and compare results from analyses of molecular data with classifications and phylogenies based on previous morphological studies. Partial COI sequences (657 bp, excluding primers) were obtained from 28 species representing most of the diversity in the Order Octopoda, along with a sequence from the established sister taxon to the Octopoda, Vampyroteuthis infernalis. Our results exhibit a number of basic differences from inferences based on standard morphological data. We attempt to resolve these differences based on our confidence in various morphological features. An important finding is the failure of the molecular data to support the monophyly of the Octopodidae. This family contains over 90% of the species in the Suborder Incirrata and has always been difficult to define. Statistical tests constraining Octopodidae monophyly by use of parsimony and maximum-likelihood techniques suggest that all incirrates may be derived from octopodids.  相似文献   

18.
The Bering Land Bridge has served as a major corridor of interchange between the northern continents for many organisms. We investigated the phylogeny of all extant species of Martes (except for Martes gwatkinsi from India) to infer evolutionary relationships and characterize the extent of trans-Beringian movements. Analyses of complete sequences of the mitochondrial cytochrome b gene and partial sequences of the nuclear aldolase C gene (241bp) suggested that the genus Martes may be paraphyletic with respect to Gulo gulo. These data supported the fossil record's indication that early radiations gave rise to two subgenera (Pekania and Charronia) and that a more recent, possibly rapid, radiation gave rise to species of the third subgenus (Martes). Two colonizations of North America are evident, one by members of the subgenus Pekania and another by member of the subgenus Martes. Contrary to hypotheses based on morphological evidence, the "americana" and "caurina" subspecies groups of Martes americana are not the result of independent colonizations of North America. The phylogenetic analyses of cytochrome b data were consistent with the recognition of these subspecies groups as monophyletic clades; however, variation in the aldolase C sequences indicated that these generally parapatric groups may interbreed in a region of limited geographic overlap.  相似文献   

19.
The capuchinos are a group of birds in the genus Sporophila that has apparently radiated recently, as evidenced by their lack of mitochondrial genetic diversity. We obtained cytochrome c oxidase I (COI) sequences (or DNA barcodes) for the 11 species of the group and various outgroups. We compared the patterns of COI variability of the capuchinos with those of the largest barcode data set from neotropical birds currently available (500 species representing 51% of avian richness in Argentina), and subjected COI sequences to neighbour-joining, maximum parsimony and Bayesian phylogenetic analyses as well as statistical parsimony network analysis. A clade within the capuchinos, the southern capuchinos, showed higher intraspecific and lower interspecific divergence than the remaining Argentine species. As most of the southern capuchinos shared COI haplotypes and pairwise distances within species were in many cases higher than distances between them, the phylogenetic affinities within the group remained unresolved. The observed genetic pattern is consistent with both incomplete lineage sorting and gene flow between species. The southern capuchinos constitute the only large group of species among the neotropical birds barcoded so far that are inseparable when using DNA barcodes, and one of few multispecies avian groups known to lack reciprocal monophyly. Extending the analysis to rapidly evolving nuclear and mitochondrial markers will be crucial to understanding this radiation. Apart from giving insights into the evolution of the capuchinos, this study shows how DNA barcoding can rapidly flag species or groups of species worthy of deeper study.  相似文献   

20.
We used Cytochrome Oxidase Subunit 1 (COI) to assess the phylogenetic relationships and taxonomy of Nebela sensu stricto and similar taxa (Nebela group, Arcellinida) in order to clarify the taxonomic validity of morphological characters. The COI data not only successfully separated all studied morphospecies but also revealed the existence of several potential cryptic species. The taxonomic implications of the results are: (1) Genus Nebela is paraphyletic and will need to be split into at least two monophyletic assemblages when taxon sampling is further expanded. (2) Genus Quadrulella, one of the few arcellinid genera building its shell from self-secreted siliceous elements, and the mixotrophic Hyalosphenia papilio branch within the Nebela group in agreement with the general morphology of their shell and the presence of an organic rim around the aperture (synapomorphy for Hyalospheniidae). We thus synonymise Hyalospheniidae and Nebelidae. Hyalospheniidae takes precedence and now includes Hyalosphenia, Quadrulella (previously in the Lesquereusiidae) and all Nebelidae with the exception of Argynnia and Physochila. Leptochlamys is Arcellinida incertae sedis. We describe a new genus Padaungiella Lara et Todorov and a new species Nebela meisterfeldi n. sp. Heger et Mitchell and revise the taxonomic position (and rank) of several taxa. These results show that the traditional morphology-based taxonomy underestimates the diversity within the Nebela group, and that phylogenetic relationships are best inferred from shell shape rather than from the material used to build the shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号