首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The ends of eukaryotic chromosomes are protected by specialized telomere chromatin structures. Rap1 and Cdc13 are essential for the formation of functional telomere chromatin in budding yeast by binding to the double-stranded part and the single-stranded 3' overhang, respectively. We analyzed the binding properties of Saccharomyces castellii Rap1 and Cdc13 to partially single-stranded oligonucleotides, mimicking the junction of the double- and single-stranded DNA (ds-ss junction) at telomeres. We determined the optimal and the minimal DNA setup for a simultaneous binding of Rap1 and Cdc13 at the ds-ss junction. Remarkably, Rap1 is able to bind to a partially single-stranded binding site spanning the ds-ss junction. The binding over the ds-ss junction is anchored in a single double-stranded hemi-site and is stabilized by a sequence-independent interaction of Rap1 with the single-stranded 3' overhang. Thus, Rap1 is able to switch between a sequence-specific and a nonspecific binding mode of one hemi-site. At a ds-ss junction configuration where the two binding sites partially overlap, Rap1 and Cdc13 are competing for the binding. These results shed light on the end protection mechanisms and suggest that Rap1 and Cdc13 act together to ensure the protection of both the 3' and the 5' DNA ends at telomeres.  相似文献   

3.
Replication protein A (RPA) is a highly conserved heterotrimeric single-stranded DNA-binding protein involved in different events of DNA metabolism. In yeast, subunits 1 (RPA-1) and 2 (RPA-2) work also as telomerase recruiters and, in humans, the complex unfolds G-quartet structures formed by the 3' G-rich telomeric strand. In most eukaryotes, RPA-1 and RPA-2 bind DNA using multiple OB fold domains. In trypanosomatids, including Leishmania, RPA-1 has a canonical OB fold and a truncated RFA-1 structural domain. In Leishmania amazonensis, RPA-1 alone can form a complex in vitro with the telomeric G-rich strand. In this work, we show that LaRPA-1 is a nuclear protein that associates in vivo with Leishmania telomeres. We mapped the boundaries of the OB fold DNA-binding domain using deletion mutants. Since Leishmania and other trypanosomatids lack homologues of known telomere end binding proteins, our results raise questions about the function of RPA-1 in parasite telomeres.  相似文献   

4.
Telomeres are dynamic DNA-protein complexes at the end of linear chromosomes. Maintenance of functional telomeres is required for chromosome stability, and to avoid the activation of DNA damage response pathway and cell cycle arrest. Telomere-binding proteins play crucial roles in the maintenance of functional telomeres. In this study, we employed affinity pull-down and proteomic approach to search for novel proteins that interact with the single-stranded telomeric DNA. The proteins identified by two-dimensional gel electrophoresis were further characterized by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and MALDI-TOF-TOF tandem MS. Among the five identified proteins, we report here the biochemical properties of a novel protein, hnRNP A3. The purified hnRNP A3 bound specifically to G-rich strand, but not to C-rich strand or double-stranded telomeric DNA. The RRM1 (RNA recognition motif 1) domain, but not RRM2, of hnRNP A3 is sufficient to confer specific binding to the telomeric sequence. In addition, we present evidence that hnRNP A3 can inhibit telomerase extension in vitro. These biochemical properties of hnRNP A3 suggest that hnRNP A3 can participate in telomere regulation in vivo.  相似文献   

5.
The interaction of recA protein with single-stranded (ss) phi X174 DNA has been examined by means of a nuclease protection assay. The stoichiometry of protection was found to be 1 recA monomer/approximately 4 nucleotides of ssDNA both in the absence of a nucleotide cofactor and in the presence of ATP. In contrast, in the presence of adenosine 5'-O-(thiotriphosphate) (ATP gamma S) the stoichiometry was 1 recA monomer/approximately 8 nucleotides. No protection was seen with ADP. In the absence of a nucleotide cofactor, the binding of recA protein to ssDNA was quite stable as judged by equilibration with a challenge DNA (t1/2 approximately 30 min). Addition of ATP stimulated this transfer (t1/2 approximately 3 min) as did ADP (t1/2 approximately 0.2 min). ATP gamma S greatly reduced the rate of equilibration (t1/2 greater than 12 h). Direct visualization of recA X ssDNA complexes at subsaturating recA protein concentrations using electron microscopy revealed individual ssDNA molecules partially covered with recA protein which were converted to highly condensed networks upon addition of ATP gamma S. These results have led to a general model for the interaction of recA protein with ssDNA.  相似文献   

6.
Telomeres are specific protein–DNA complexes that protect the ends of eukaryotic chromosomes from fusion and degradation and are maintained by a specialized mechanism exerted by telomerase and telomere-binding proteins (TBPs), which are evolutionarily conserved. AtTBP1 is an Arabidopsis thaliana protein that binds plant telomeric DNA in vitro. Here, we demonstrated that lack of AtTBP1 results in a deregulation of telomere length control, with mutant telomeres expanding steadily by the fourth generation. DNA-binding studies with mutant AtTBP1 proteins showed that the Myb-extension domain of AtTBP1 is required for binding to plant telomeric DNA. Our results suggest that AtTBP1 is involved in the telomere length mechanism in A. thaliana and that the Myb-extension domain of AtTBP1 may stabilize plant telomeric DNA binding.  相似文献   

7.
Interaction of terminal transferase with single-stranded DNA   总被引:2,自引:0,他引:2  
A 58-kDa monomer of terminal transferase was isolated from calf thymus using a monoclonal antibody affinity column. The enzymatic activity was comparable to that of the 44-kDa alpha beta dimer isolated by conventional methods. Binding of the two enzyme forms to single-stranded DNA was monitored by fluorescence. The site size of both forms was approximately 11 +/- 2 nucleotides. Binding of the 44-kDa alpha beta dimer to polydeoxyadenosine was examined under several conditions. The cooperativity parameter increased from about 90 in the presence of Mg2+ to 300-400 in the absence of Mg2+. The observed dissociation constant of 3-5 microM was essentially independent of salt concentration, whereas the intrinsic dissociation constant decreased about 5-fold in the presence of Mg2+. The binding parameters of the 58-kDa monomer were independent of buffer composition and were similar to those of the 44-kDa alpha beta dimer in the presence of Mg2+. These results indicate that the additional 14-kDa peptide sequences present in the high molecular mass monomer form are not part of the DNA-binding site of terminal transferase.  相似文献   

8.
Lei M  Baumann P  Cech TR 《Biochemistry》2002,41(49):14560-14568
The fission yeast Pot1 (protection of telomeres) protein is a single-stranded telomeric DNA-binding protein and is required to protect the ends of chromosomes. Its N-terminal DNA-binding domain, Pot1pN, shows sequence similarity to the first OB fold of the telomere-binding protein alpha subunit of Oxytricha nova. The minimal-length telomeric ssDNA required to bind Pot1pN was determined to consist of six nucleotides, GGTTAC, by gel filtration chromatography and filter-binding assay (K(D) = 83 nM). Pot1pN is a monomer, and each monomer binds one hexanucleotide. Experiments with nucleotide substitutions demonstrated that the central four nucleotides are crucial for binding. The dependence of Pot1pN-ssDNA binding on salt concentration was consistent with a single ionic contact between the protein and the ssDNA phosphate backbone, such that at physiological salt condition 83% of the free energy of binding is nonelectrostatic. Subsequent binding experiments with longer ssDNAs indicated that Pot1pN binds to telomeric ssDNA with 3' end preference and in a highly cooperative manner that mainly results from DNA-induced protein-protein interactions. Together, the binding properties of Pot1pN suggest that the protein anchors itself at the very 3' end of a chromosome and then fills in very efficiently, coating the entire single-stranded overhang of the telomere.  相似文献   

9.
Eukaryotic chromosome ends are protected from illicit DNA joining by protein-DNA complexes called telomeres. In most studied organisms, telomeric DNA is composed of multiple short G-rich repeats that end in a single-stranded tail that is protected by the protein POT1. Mammalian POT1 binds two telomeric repeats as a monomer in a sequence-specific manner, and discriminates against RNA of telomeric sequence. While addressing the RNA discrimination properties of SpPot1, the POT1 homolog in Schizosaccharomyces pombe, we found an unanticipated ssDNA-binding mode in which two SpPot1 molecules bind an oligonucleotide containing two telomeric repeats. DNA binding seems to be achieved via binding of the most N-terminal OB domain of each monomer to each telomeric repeat. The SpPot1 dimer may have evolved to accommodate the heterogeneous spacers that occur between S. pombe telomeric repeats, and it also has implications for telomere architecture. We further show that the S. pombe telomeric protein Tpz1, like its mammalian homolog TPP1, increases the affinity of Pot1 for telomeric single-stranded DNA and enhances the discrimination of Pot1 against RNA.  相似文献   

10.
Replication protein A (RPA), a heterotrimeric single-stranded DNA binding protein, is required for recombination, and stimulates homologous pairing and DNA strand exchange promoted in vitro by human recombination protein HsRad51. Co-immunoprecipitation revealed that purified RPA interacts physically with HsRad51, as well as with HsDmc1, the homolog that is expressed specifically in meiosis. The interaction with HsRad51 was mediated by the 70 kDa subunit of RPA, and according to experiments with deletion mutants, this interaction required amino acid residues 169-326. In exponentially growing mammalian cells, 22% of nuclei showed foci of RPA protein and 1-2% showed foci of Rad51. After gamma-irradiation, the percentage of cells with RPA foci increased to approximately 50%, and those with Rad51 foci to 30%. All of the cells with foci of Rad51 had foci of RPA, and in those cells the two proteins co-localized in a high fraction of foci. The interactions of human RPA with Rad51, replication proteins and DNA are suited to the linking of recombination to replication.  相似文献   

11.
Oligodeoxyribonucleoside methylphosphonates derivatized at the 5' end with 4'-(amino-alkyl)-4,5',8-trimethylpsoralen were prepared. The interaction of these psoralen-derivatized methylphosphonate oligomers with synthetic single-stranded DNAs 35 nucleotides in length was studied. Irradiation of a solution containing the 35-mer and its complementary methylphosphonate oligomer at 365 nm gave a cross-linked duplex produced by cycloaddition between the psoralen pyrone ring of the derivatized methylphosphonate oligomer and a thymine base of the DNA. Photoadduct formation could be reversed by irradiation at 254 nm. The rate and extent of cross-linking were dependent upon the length of the aminoalkyl linker between the trimethylpsoralen group and the 5' end of the methylphosphonate oligomer. Methylphosphonate oligomers derivatized with 4'-[[N-(2-aminoethyl)amino]methyl]- 4,5',8-trimethylpsoralen gave between 70% and 85% cross-linked product when irradiated for 20 min at 4 degrees C. Further irradiation did not increase cross-linking, and preirradiation of the psoralen-derivatized methylphosphonate oligomer at 365 nm reduced or prevented cross-linking. These results suggest that the methylphosphonate oligomers undergo both cross-linking and deactivation reactions when irradiated at 365 nm. The extent of cross-linking increased up to 10 microM oligomer concentration and dramatically decreased at temperatures above the estimated Tm of the methylphosphonate oligomer-DNA duplex. The cross-linking reaction was dependent upon the fidelity of base-pairing interactions between the methylphosphonate oligomers and the single-stranded DNA. Noncomplementary oligomers did not cross-link, and the extent of cross-linking of oligomers containing varying numbers of noncomplementary bases was greatly diminished or eliminated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The remarkable selectivity of N-methyl mesoporphyrin IX (NMM) for G-quadruplexes (GQs) is long known, however its ability to stabilize and bind GQs has not been investigated in detail. Through the use of circular dichroism, UV-visible spectroscopy and fluorescence resonance energy transfer (FRET) melting assay we have shown that NMM stabilizes human telomeric DNA dAG(3)(TTAG(3))(3) (Tel22) and is selective for its parallel conformation to which it binds in 1:1 stoichiometry with a binding constant of ≈ 1.0 × 10(5)M(-1). NMM does not interact with an antiparallel conformation of Tel22 in sodium buffer and is the second example in the literature, after TOxaPy, of a ligand with an excellent selectivity for a specific GQ structure. NMM's stabilizing ability toward predominantly parallel GQ conformation is universal: it stabilizes a variety of biologically relevant G-rich sequences including telomeres and oncogene promoters. The N-methyl group is integral for selectivity and stabilization, as the unmethylated analogue, mesoporphyrin IX, does not stabilize GQ DNA in FRET melting assays. Finally, NMM induces the isomerization of Tel22 into a structure with increased parallel component in K(+) but not in Na(+) buffer. The ability of NMM to cause structural rearrangement and efficient stabilization of Tel22 may bear biological significance.  相似文献   

13.
The nucleation step of Escherichia coli RecA filament formation on single-stranded DNA (ssDNA) is strongly inhibited by prebound E. coli ssDNA-binding protein (SSB). The capacity of RecA protein to displace SSB is dramatically enhanced in RecA proteins with C-terminal deletions. The displacement of SSB by RecA protein is progressively improved when 6, 13, and 17 C-terminal amino acids are removed from the RecA protein relative to the full-length protein. The C-terminal deletion mutants also more readily displace yeast replication protein A than does the full-length protein. Thus, the RecA protein has an inherent and robust capacity to displace SSB from ssDNA. However, the displacement function is suppressed by the RecA C terminus, providing another example of a RecA activity with C-terminal modulation. RecADeltaC17 also has an enhanced capacity relative to wild-type RecA protein to bind ssDNA containing secondary structure. Added Mg(2+) enhances the ability of wild-type RecA and the RecA C-terminal deletion mutants to compete with SSB and replication protein A. The overall binding of RecADeltaC17 mutant protein to linear ssDNA is increased further by the mutation E38K, previously shown to enhance SSB displacement from ssDNA. The double mutant RecADeltaC17/E38K displaces SSB somewhat better than either individual mutant protein under some conditions and exhibits a higher steady-state level of binding to linear ssDNA under all conditions.  相似文献   

14.
Interaction of dimeric intercalating dyes with single-stranded DNA.   总被引:3,自引:2,他引:3       下载免费PDF全文
The unsymmetrical cyanine dye thiazole orange homodimer (TOTO) binds to single-stranded DNA (ssDNA, M13mp18 ssDNA) to form a fluorescent complex that is stable under the standard conditions of electrophoresis. The stability of this complex is indistinguishable from that of the corresponding complex of TOTO with double-stranded DNA (dsDNA). To examine if TOTO exhibits any binding preference for dsDNA or ssDNA, transfer of TOTO from pre-labeled complexes to excess unlabeled DNA was assayed by gel electrophoresis. Transfer of TOTO from M13 ssDNA to unlabeled dsDNA proceeds to the same extent as that from M13 dsDNA to unlabeled dsDNA. A substantial amount of the dye is retained by both the M13 ssDNA and M13 dsDNA even when the competing dsDNA is present at a 600-fold weight excess; for both dsDNA and ssDNA, the pre-labeled complex retains approximately one TOTO per 30 bp (dsDNA) or bases (ssDNA). Rapid transfer of dye from both dsDNA and ssDNA complexes is seen at Na+ concentrations > 50 mM. Interestingly, at higher Na+ or Mg2+ concentrations, the M13 ssDNA-TOTO complex appears to be more stable to intrinsic dissociation (dissociation in the absence of competing DNA) than the complex between TOTO and M13 dsDNA. Similar results were obtained with the structurally unrelated dye ethidium homodimer. The dsDNA- and ssDNA-TOTO complexes were further examined by absorption, fluorescence and circular dichroism spectroscopy. The surprising conclusion is that polycationic dyes, such as TOTO and EthD, capable of bis-intercalation, interact with dsDNA and ssDNA with very similar high affinity.  相似文献   

15.
Delaney KJ  Xu R  Zhang J  Li QQ  Yun KY  Falcone DL  Hunt AG 《Plant physiology》2006,140(4):1507-1521
The Arabidopsis (Arabidopsis thaliana) gene that encodes the probable ortholog of the 30-kD subunit of the mammalian cleavage and polyadenylation specificity factor (CPSF) is a complex one, encoding small (approximately 28 kD) and large (approximately 68 kD) polypeptides. The small polypeptide (AtCPSF30) corresponds to CPSF30 and is the focus of this study. Recombinant AtCPSF30 was purified from Escherichia coli and found to possess RNA-binding activity. Mutational analysis indicated that an evolutionarily conserved central core of AtCPSF30 is involved in RNA binding, but that RNA binding also requires a short sequence adjacent to the N terminus of the central core. AtCPSF30 was found to bind calmodulin, and calmodulin inhibited the RNA-binding activity of the protein in a calcium-dependent manner. Mutational analysis showed that a small part of the protein, again adjacent to the N terminus of the conserved core, is responsible for calmodulin binding; point mutations in this region abolished both binding to and inhibition of RNA binding by calmodulin. Interestingly, AtCPSF30 was capable of self-interactions. This property also mapped to the central conserved core of the protein. However, calmodulin had no discernible effect on the self-association. These results show that the central portion of AtCPSF30 is involved in a number of important functions, and they raise interesting possibilities for both the interplay between splicing and polyadenylation and the regulation of these processes by stimuli that act through calmodulin.  相似文献   

16.
Chen R  Qian J  Wang L  Mao YM 《BioTechniques》2003,35(1):158-162
In this article, we report a simple, rapid, and efficient method to detect telomerase activity: the premature termination of telomeric extension-PCR (PTEP). Similar to the telomeric repeat amplification protocol (TRAP), this method is based on PCR amplification following the in vitro telomerase reaction, while the in vitro telomerase reaction here is prematurely, rather than randomly, terminated. Apart from this, the telomeric extension products are used as initial primers, instead of as templates, to trigger the amplification with a specially constructed plasmid DNA as the template that cannot be directly amplified with the telomerase primer. The end product is a specific 159-bp DNA fragment that reflects telomerase activity. Because its product can be clearly identified with routine agarose gel electrophoresis and ethidium bromide staining, PTEP allows even lesser-equipped laboratories to easily detect telomerase activity.  相似文献   

17.
The double-stranded telomeric repeat-binding protein (TRP) AtTRP1 is isolated from Arabidopsis thaliana. Using gel retardation assays, we defined the C-terminal 97 amino acid residues, Gln464 to Val560 (AtTRP1(464-560)), as the minimal structured telomeric repeat-binding domain. This region contains a typical Myb DNA-binding motif and a C-terminal extension of 40 amino acid residues. The monomeric AtTRP1(464-560) binds to a 13-mer DNA duplex containing a single repeat of an A.thaliana telomeric DNA sequence (GGTTTAG) in a 1:1 complex, with a K(D) approximately 10(-6)-10(-7) M. Nuclear magnetic resonance (NMR) examination revealed that the solution structure of AtTRP1(464-560) is a novel four-helix tetrahedron rather than the three-helix bundle structure found in typical Myb motifs and other TRPs. Binding of the 13-mer DNA duplex to AtTRP1(464-560) induced significant chemical shift perturbations of protein amide resonances, which suggests that helix 3 (H3) and the flexible loop connecting H3 and H4 are essential for telomeric DNA sequence recognition. Furthermore, similar to that in hTRF1, the N-terminal arm likely contributes to or stabilizes DNA binding. Sequence comparisons suggested that the four-helix structure and the involvement of the loop residues in DNA binding may be features unique to plant TRPs.  相似文献   

18.
S W Morrical  J Lee  M M Cox 《Biochemistry》1986,25(7):1482-1494
The single-stranded DNA binding protein of Escherichia coli (SSB) stimulates recA protein promoted DNA strand exchange reactions by promoting and stabilizing the interaction between recA protein and single-stranded DNA (ssDNA). Utilizing the intrinsic tryptophan fluorescence of SSB, an ATP-dependent interaction has been detected between SSB and recA-ssDNA complexes. This interaction is continuous for periods exceeding 1 h under conditions that are optimal for DNA strand exchange. Our data suggest that this interaction does not involve significant displacement of recA protein in the complex by SSB when ATP is present. The properties of this interaction are consistent with the properties of SSB-stabilized recA-ssDNA complexes determined by other methods. The data are incompatible with models in which SSB is displaced after functioning transiently in the formation of recA-ssDNA complexes. A continuous association of SSB with recA-ssDNA complexes may therefore be an important feature of the mechanism by which SSB stimulates recA protein promoted reactions.  相似文献   

19.
The activation of a telomere maintenance mechanism is required for cancer development in humans. While most tumors achieve this by expressing the enzyme telomerase, a fraction (5–15%) employs a recombination-based mechanism termed alternative lengthening of telomeres (ALT). Here we show that loss of the single-stranded DNA-binding protein replication protein A (RPA) in human ALT cells, but not in telomerase-positive cells, causes increased exposure of single-stranded G-rich telomeric DNA, cell cycle arrest in G2/M phase, accumulation of single-stranded telomeric DNA within ALT-associated PML bodies (APBs), and formation of telomeric aggregates at the ends of metaphase chromosomes. This study demonstrates differences between ALT cells and telomerase-positive cells in the requirement for RPA in telomere processing and implicates the ALT mechanism in tumor cells as a possible therapeutic target.  相似文献   

20.
Archaeal DNA repair pathways are not well defined; in particular, there are no convincing candidate proteins for detection of DNA mismatches or the bulky lesions removed by excision repair pathways. Single-stranded DNA-binding proteins (SSBs) play a central role in DNA replication, recombination and repair. The crenarchaeal SSB is a monomer with a single oligonucleotide-binding fold for single-stranded DNA binding coupled to a flexible C-terminal tail reminiscent of bacterial SSB that mediates interactions with other proteins. We demonstrate that Sulfolobus solfataricus SSB can melt DNA containing a mismatch or DNA lesion specifically in vitro. We suggest that a potential role for SSB in archaea is the detection of DNA damage due to local destabilisation of the DNA double helix, followed by recruitment of specific repair proteins. Proteins interacting specifically with a single-stranded DNA:SSB complex include several known or putative DNA repair proteins and DNA helicases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号