首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rat parotid acinar cells dispersed by a combination of enzymatic treatments remain sensitive to adrenergic and cholinergic agonists. Previous studies have implicated Ca2+ in both adrenergic and cholinergic responses. This paper describes the effects of adrenergic and cholinergic stimulation upon 45Ca2+ fluxes in isolated parotid acinar cells. Suspensions of dispersed cells took up 45Ca2+ from the medium. The net rate of isotope influx was increased by the adrenergic agonists epinephrine, norepinephrine, isoproterenol, and phenylephrine, and by the cholinergic agonists acetylcholine and carbamylcholine. In 1 mM Ca2+, epinephrine was capable of increasing the 45Ca2+ influx in 40 min to three times that of resting cells. Isoproterenol, a beta-adrenergic agonist, was only half as effective as epinephrine in stimulating maximal calcium uptake although it was equally effective in stimulating maximal amylase release in the same cells. Experiments with the alpha-adrenergic antagonist phentolamine, the beta-adrenergic antagonist propranolol, and the cholinergic antagonist atropine confirmed that alpha- and beta-adrenergic and cholinergic stimulation each had a direct stimulatory effect on 45Ca2+ uptake. N6,O2'-Dibutyryl adenosine 3':5'-monophosphate also caused some stimulation of net calcium uptake. Direct measurement of Ca2+ efflux indicated that the increased calcium uptake in the presence of epinephrine was not the indirect result of a decrease in efflux. The rates of both basal and epinephrine-stimulated calcium uptake increased with increasing calcium concentration in the medium. Epinephrine had little effect on the rate of calcium uptake at 0.15 mM Ca2+. Although the energy poison NaCN had little effect on the basal rate of calcium uptake, the stimulable component of calcium uptake was inhibited by NaCN at all calcium concentrations tested (0.2 to 4.1 mM).  相似文献   

2.
The undecapeptides, substance P and eledoisin, caused a rapid, concentration-dependent increase in K+ efflux and amylase release from parotid tissue slices. The effects were not blocked by beta-adrenergic, alpha-adrenergic, or cholinergic antagonists. Incubation buffer calcium was required for stimulation of K efflux and amylase release. The action of the undecapepides was independent of any effects on parotid cyclic AMP or cyclic GMP levels. Since the actions of the undecapeptides were Ca2+ dependent and no effects on cyclic nucleotide levels were discerned it was concluded that Ca2+ plays a primary role in agonist regulation of K+ efflux from the parotid.  相似文献   

3.
The present studies were performed to determine the role of cyclic GMP in regulating agonist mediated calcium entry in the pancreatic acinar cell. In guinea pig-dispersed pancreatic acini the findings demonstrated that carbachol stimulated a transient 20-40-fold rise in cellular cyclic GMP followed by a sustained 3-4-fold rise in cellular cyclic GMP. The guanylate cyclase inhibitor, 6-anilino-5,8-quinolinedione (LY83583), caused a dose-dependent inhibition of carbachol-stimulated increases in cellular cyclic GMP both during the initial transient large increase in cyclic GMP and the sustained increase in cyclic GMP. LY83583 also inhibited cellular Ca2+ influx during carbachol stimulation and reloading of the agonist-sensitive pool of Ca2+ at the termination of carbachol stimulation with atropine. The effect of the inhibition on reloading of the agonist-sensitive pool was secondary to its effects on the plasma membrane C2+ entry. The addition of dibutyryl cyclic GMP to LY83583-treated acini restored Ca2+ influx across the plasma membrane. Nitroprusside increased both cellular cyclic GMP and the rate of Ca2+ influx. During periods when plasma membrane Ca2+ entry was activated, cellular cyclic GMP levels were increased. These results suggest that agonist-induced increases in cellular cyclic GMP are necessary and sufficient to mediate the effects of the agonist on the plasma membrane Ca2+ entry mechanism.  相似文献   

4.
Cyclic GMP formation and inositol phospholipid hydrolysis were studied in rat brain slices to determine if the two processes have common origins. Muscarinic cholinergic stimulation enhanced [3H]inositol phosphate ([ 3H]IP) accumulation from slices prelabelled with [3H]inositol but did not affect cyclic GMP formation in the cortex, striatum, or cerebellum. An elevated level of extracellular K+ stimulated accumulation of both cyclic GMP and [3H]IP in cortex slices. The former, but not the latter, was reduced by lipoxygenase and phospholipase A2 inhibition. Calcium channel activation enhanced and blockade reduced K+-stimulated [3H]IP formation without affecting the cyclic GMP level, and there were differences in the Ca2+ requirements for the two responses. Thus, there is no support for the concept that guanylate cyclase activation inevitably accompanies inositol phospholipid breakdown, and the evidence presented demonstrates that K+ stimulation promotes cyclic GMP and [3H]IP accumulation by different transducing pathways.  相似文献   

5.
In the absence of cyclic nucleotides heart microsomes have two classes of calcium binding sites with binding constants of 0.69 and 0.071 micron-1 and capacities of 2.2 and 9.7 nmol/mg protein, respectively. Neither cyclic AMP nor monobutyryl cyclic AMP affect binding but cyclic GMP and monobutyryl cyclic GMP cause the complete loss of the high affinity calcium binding sites, Cyclic GMP (but not monobutyryl cyclic GMP) also causes a decrease in the binding constant of the low affinity binding sites. AMP, GMP and Tris-butyrate do not affect calcium binding. The effects of the cyclic nucleotides are direct and are not mediated by protein phosphorylation. Phosphorylation of microsomal proteins increases the binding constant but not the capacity of the high affinity calcium binding sites. The capacity and also, perhaps, binding constant of the low affinity sites is also increased by phosphorylation. In additon to their effects on calcium binding the cyclic nucleotides also affect the movements of calcium into and out of the microsomes. The effects are again direct and not mediated by protein phosphorylation. Cyclic GMP decreases the rate of Ca2+ efflux from preloaded cardiac microsomes and also appears to decrease the rate of uptake of Ca2+ by cardiac microsomes though this effect is less clear cut than the action on efflux. The cyclic nucleotide has a half maximal effect at a concentration of 100 microns. By contrast cyclic AMP increases the rate of influx of Ca2+ into heart microsomes and the rate of efflux of Ca2+ from preloaded preparations. The effect is, however, rather slight. It is suggested that the most obvious interpretation of these results is that cyclic GMP decreases the Ca2+ permeability of the cardiac microsomal membrane while cyclic AMP increases the permeability. In contrast to the results found with membrane preparations from certain other tissues phosphorylation of cardiac microsomal proteins does not appear to alter Ca2+ efflux or influx out of, or into, cardiac microsomal preparations. It is thus concluded that phosphorylation of cardiac microsomal proteins does not affect the Ca2+ permeability of the microsomal membrane.  相似文献   

6.
1. Depolarization of excitable cells of the central nervous system results in the formation of the second messengers cyclic AMP, cyclic GMP, inositol phosphates, and diacylglycerides. 2. Depolarization-evoked accumulation of cyclic AMP in brain preparations can be accounted for mainly by the release of adenosine, which subsequently interacts with stimulatory adenosine receptor linked to adenylate cyclase. 3. Depolarization-evoked formation of cyclic GMP in brain preparations is linked to activation of voltage-dependent calcium channels, presumably leading to activation of guanylate cyclase by calcium ions. 4. In brain slices depolarization-evoked stimulation of phosphoinositide breakdown and subsequent formation of inositol phosphates and diacylglycerides are linked to activation of voltage-dependent calcium channels, which are sensitive to dihydropyridines, presumably leading to activation of phospholipase(s) C by calcium ions. 5. In the synaptoneurosome preparation depolarization-evoked stimulation of phosphoinositide breakdown does not involve activation of dihydropyridine-sensitive calcium channels and, instead, appears to be regulated primarily by the intracellular concentration of sodium ions. Thus, agents that induce increases in intracellular sodium--such as toxins that open or delay inactivation of voltage-dependent sodium channels; ouabain, an inhibitor of Na+/K+ ATPase that transports sodium outward and a sodium ionophore--all stimulate phosphoinositide breakdown. Mechanistically, increases in intracellular sodium either might directly affect phospholipase(s) C or might lead to influx of calcium ions through Na+/Ca2+ transporters. 6. Depolarization-evoked stimulation of cyclic AMP formation and phosphoinositide breakdown can exhibit potentiative interactions with responses to receptor agonists, thereby providing mechanisms for modulation of receptor responses by neuronal activity. 7. Since all these second messengers can induce phosphorylation of ion channels through the activation of specific kinases, it is proposed that depolarization-evoked formation of second messengers represents a putative feedback mechanism to regulate ion fluxes in excitable cells.  相似文献   

7.
Cholecystokinin and analogues increased the uptake of 2-deoxy-D-glucose and 3-O-methylglucose into isolated mouse pancreatic acini. This uptake was mediated by a facilitated glucose transport system that was saturable, stereospecific, and was inhibited by both phloretin and cytochalasin B. In agreement with previous studies of acinar function, caerulein was more potent and pentagastrin less potent than cholecystokinin in increasing sugar transport. The cholinergic analogue carbachol mimicked the effect of caerulein; atropine completely abolished the effects of carbachol but was without influence on the effects of the polypeptide hormones. In contrast, secretion, as well as dibutyryl cyclic AMP and dibutyryl cyclic GMP, had no effect on 2-deoxy-D-glucose uptake. Two lines of evidence suggested that hormonal stimulation of this sugar transport system was related to mobilization of cellular Ca2+. First, depletion of cellular Ca2+ by incubation of acini with ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid (EGTA) reduced the effect of caerulein. Second, the Ca2+ ionophore A23187 mimicked the effects of caerulein on 2-deoxy-D-glucose uptake when Ca2+ was present in the medium.  相似文献   

8.
The time courses of changes in cyclic nucleotide levels in monocytes have been studied. Histamine and prostaglandin E2 (PGE2) produced a rapid rise in cyclic AMP (peak 15 min) levels, which returned to normal within 4h, whereas cholera toxin, NaF and phosphodiesterase inhibitors produced slow sustained rises lasting over 24h. With the exception of isobutylmethylxanthine (10 mumol X 1(-1), none of these reagents altered cyclic GMP levels. alpha 1-Adrenergic and nicotinic cholinergic receptor-ligand interactions and imidazole produced rapid and relatively short-lived falls in cyclic AMP, and rises in cyclic GMP. In contrast, prostaglandin synthetase inhibitors produced delayed but more sustained falls in cyclic AMP but no rises in cyclic GMP. Agents that increased cyclic AMP decreased complement-component-C2 production, and those that decreased cyclic AMP increased C2 production. Agents that increased cyclic GMP alone (ascorbate, nitroprusside and prostaglandin F2 alpha) did not affect C2 production. Antigen-antibody complexes that stimulate C2 synthesis produced falls in cyclic AMP and rises in cyclic GMP similar to those produced by adrenergic and cholinergic ligands. Serum-treated complexes and anaphylatoxins, which inhibited C2 production, were associated with changes in cyclic AMP similar to those produced by histamine and PGE2. These data suggest that there are two transmembrane signals involved in the regulation of C2 production by monocytes. The inhibitory signal is adenylyl cyclase activation. The stimulatory signal is not so obvious, but may be Ca2+ influx, since the time courses of changes in cyclic nucleotides produced by agents that stimulate C2 synthesis are identical, and alpha 1-adrenergic agonists cause the formation of Ca2+ channels.  相似文献   

9.
Cyclic nucleotide modulation of the sarcoplasmic reticulum calcium pump has been recognized for some time. Little is known, however, of cyclic nucleotide effects on the sarcolemmal Ca2+-pump. In sarcolemmal vesicles prepared from ventricular muscle by a recent technique (Jones, L.R., Maddock, S.W. and Besch, H.R. (1980) J. Biol. Chem. 255, 9971-9980) we have demonstrated via Millipore filtration that 10(-8) M and 10(-9) M cyclic GMP depressed the rate of ATP- and Mg2+-dependent 45Ca2+ uptake by 34% and 52%, respectively. Only at millimolar levels did cyclic AMP have any effect and the respective 5'-nucleotides had no effect at all. Parallel measurement of the associated (Ca2+ + Mg2+)-ATPase in the presence of either cyclic or 5'-nucleotides, however, revealed no concomitant depression in ATP hydrolysis. In another series of experiments, the cyclic GMP effect on 45Ca2+ uptake was associated with a significant decrease in the pump Vmax, and at the most effective concentration of cyclic GMP increased the apparent Km for Ca2+. These results suggest that cyclic GMP may depress ventricular Ca2+ efflux by decreasing the enzyme turnover and to a limited extent, decreasing pump affinity for Ca2+. This supports a hypothesis whereby cyclic GMP might modulate both local biochemical and electrophysiological events by an effect on a discrete, regional pool of intracellular Ca2+.  相似文献   

10.
Several calcium antagonists were screened for their effect on muscarinic acetylcholine receptor-mediated cyclic GMP formation in murine neuroblastoma cells (clone N1E-115). Mn2+, Ni2+, and verapamil rapidly antagonized the response noncompetitively, with the following order of potency: verapamil greater than Mn2+ greater than Ni2+. The effects of Mn2+ and Ni2+, but not those of verapamil, were largely reversed by increasing extracellular calcium concentration. Additional effects of these agents included displacement of [3H]quinuclidinyl benzilate binding by verapamil and elevation of cyclic GMP levels by Mn2+ and Ni2+ in the absence of agonists. These results are in support of the hypothesis that receptor-mediated cyclic GMP formation by these cells is dependent upon entry of calcium into the cell and demonstrate the complexity of the effects of calcium antagonists.  相似文献   

11.
The effect of 4-(4-fluorophenyl)-2-methyl-6-(5-piperidinopentyloxy)pyrimidine hydrochloride (NS-7), a neuroprotective compound, on Ca2+ channels involving the activation of nitric oxide synthase (NOS) was investigated in primary neuronal culture. The NOS activity was estimated from the cyclic GMP formation. The KCl (25 mM)-stimulated cyclic GMP formation was totally abolished by a combined treatment with nifedipine and omega-agatoxin IVA (omega-Aga), whereas spontaneous cyclic GMP formation was partially but significantly reduced by nifedipine. In contrast to nifedipine, NS-7 blocked KCl-stimulated cyclic GMP formation without affecting spontaneous cyclic GMP formation. Subsequently, the effects of nifedipine and NS-7 on L-type Ca2+ channels were compared. Nifedipine blocked equally the cyclic GMP formation stimulated by various concentrations of (+/-)-Bay K 8644, whereas NS-7 inhibited the maximal response without affecting the responses induced by low concentrations of (+/-)-Bay K 8644. The effects of NS-7 on L-type and P/Q-type Ca2+ channels involving KCl-stimulated cyclic GMP formation were subsequently examined. NS-7 suppressed the KCl-stimulated cyclic GMP formation measured in the presence of omega-Aga to almost the same extent as that determined in the presence of nifedipine. In contrast, NS-7 had no influence on ionomycin-induced enhancement of cyclic GMP formation. Finally, NS-7 reversed KCl-induced elevation of the intracellular free Ca2+ concentration. These findings suggest that NS-7 inhibits NOS activation in primary neuronal culture by reducing Ca2+ entry through L-type and P/Q-type Ca2+ channels, in which the inhibition is largely dependent on Ca2+ channel activity.  相似文献   

12.
The ability of a large number of catecholamine analogs to stimulate DNA synthesis in the mouse parotid gland in vivo was compared to their effect on the levels of adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP) in this tissue. In the normal parotid gland the level of cyclic GMP is very low (10?9 moles/kg wet wt), being only 1/800th of the cyclic AMP concentration. Isoproterenol increases the levels of cyclic AMP and cyclic GMP 30- and 3-fold, respectively. The increase in cyclic AMP is biphasic with an apparent early maximum at 2.5 min and a main peak at 15 min while the increase in cyclic GMP is monophasic with maximum levels at 15 min. Other analogs showed a similar effect on cyclic AMP levels but the time course of increases in cyclic GMP was very variable with peak stimulation as early as 1 min in some cases. The ability of analogs to cause the accumulation of cyclic AMP was correlated with their capacity to activate adenylate cyclase in parotid extracts and to act as β-adrenergic agonists in other systems. All compounds which raised cyclic AMP levels stimulated DNA synthesis but a number of other analogs also stimulated DNA synthesis. The effects of these analogs have been correlated with their ability to raise the intracellular concentration of cyclic GMP. Cholinergic agents also cause the accumulation of cyclic GMP but the effect of the analogs does not appear to be mediated through the cholinergic system as atropine does not block their effects and cholinergic agonists do not stimulate DNA synthesis. It is suggested that cholinergic agonists and the catecholamine analogs act primarily on the duct and acinar cells, respectively.Significant with inhibitors of the rises in cyclic nucleotide levels suggest that in isoproterenol stimulation it is the rise in cyclic GMP which is the more significant event in relation to stimulation of DNA synthesis.  相似文献   

13.
Modulation of Neuronal Signal Transduction Systems by Extracellular ATP   总被引:4,自引:4,他引:4  
The secretion of ATP by stimulated nerves is well documented. Following repetitive stimulation, extracellular ATP at the synapse can accumulate to levels estimated to be well over 100 microM. The present study examined the effects of extracellular ATP in the concentration range of 0.1-1.0 mM on second-messenger-generating systems in cultured neural cells of the clones NG108-15 and N1E-115. Cells in a medium mimicking the physiological extracellular environment were used to measure 45Ca2+ uptake, changes in free intracellular Ca2+ levels by the probes aequorin and Quin-2, de novo generation of cyclic GMP and cyclic AMP from intracellular GTP and ATP pools prelabeled with [3H]guanosine and [3H]adenine, respectively, and phosphoinositide metabolism in cells preloaded with [3H]inositol and assayed in the presence of LiCl. Extracellular ATP induced a concentration-dependent increase of 45Ca2+ uptake by intact cells, which was additive with the uptake induced by K+ depolarization. The increased uptake involved elevation of intracellular free Ca2+ ions, evidenced by measuring aequorin and Quin-2 signals. At the same concentration range (0.1-1.0 mM), extracellular ATP induced an increase in [3H]cyclic GMP formation, and a decrease in prostaglandin E1-stimulated [3H]cyclic AMP generation. In addition, extracellular ATP (1 mM) caused a large (15-fold) increase in [3H]inositol phosphates accumulation, and this effect was blocked by including La3+ ions in the assay medium. In parallel experiments, we found in NG108-15 cells surface protein phosphorylation activity that had an apparent Km for extracellular ATP at the same concentration required to produce half-maximal effects on Ca2+ uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The role of calcium and guanosine 3':5'-monophosphate (cyclic GMP) in the regulation of thyroid metabolism has been investigated in dog thyroid slices. Carbamoylcholine enhanced glucose carbon-1 oxidation, protein iodination, cyclic GMP accumulation and decreased thyrotropin-induced adenosine 3':5'-monophosphate (cyclic AMP) accumulation and iodine secretion; it did not affect protein synthesis. The effects of carbamoylcholine were reproduced under various experimental conditions by supplementary calcium in the medium, ouabain, and in media in which Na+ had been replaced by choline chloride. They were inhibited by lanthanum. These results further support the hypothesis that free intracellular Ca2+ is the intracellular signal for carbamoylcholine effects and suggest that a Na+ -gradient-driven Ca2+ extrusion mechanism operates in the thyroid cell. Mn2+ reproduced the effect of Ca2+ on glucose oxidation, protein iodination and cyclic GMP accumulation in Ca2+ -depleted slices and medium, and thus mimicked some intracellular effects of Ca2+. On the other hand Mn2+ inhibited the carbamoylcholine effect on thyrotropin-induced thyroid secretion and cyclic AMP accumulation, and Ca2+ inhibited the Mn2+-induced cyclic GMP accumulation. This suggests that the two ions compete for the same channel. Similarly Mn2+ inhibited calcium effects in the presence of ionophore A23187. Procaine inhibited protein iodination under all conditions suggesting a primary effect; it also inhibited all carbamoylcholine and ouabain actions. However the drug did not inhibit the effects of choline chloride and its action was reversed by raising carbamoylcholine but not Ca2+ concentration; it is therefore doubtful that procaine acts by blocking Ca2+ channels. In media without added Ca2+, Mn2+ increased cyclic GMP accumulation but did not decrease thyrotropin-induced cyclic AMP accumulation or iodine secretion, which suggests that cyclic GMP cannot be the sole mediator of the latter two effects of carbamoylcholine.  相似文献   

15.
Measurements of calcium uptake and cyclic GMP production by cerebellar granule cells grown in primary culture demonstrated that ethanol preferentially inhibited N-methyl-D-aspartate (NMDA) receptor-gated cation channel function. Concentrations of ethanol as low as 10 mM inhibited NMDA-stimulated Ca2+ uptake by greater than 30%, and ethanol also inhibited NMDA-stimulated (Ca2+-dependent) cyclic GMP accumulation in a similar, dose-dependent manner. Responses to kainate were significantly less sensitive to ethanol. Studies using various concentrations of NMDA, as well as phencyclidine (PCP) and glycine, suggested that ethanol affected the "coagonist" binding site of the NMDA receptor-channel complex, rather than the PCP recognition site.  相似文献   

16.
Whereas extracellular calcium is absolutely required for neurotransmitter release consequent to stimulation of adrenergic and other neurons, a large number of substances are known to modify the amount of norepinephrine released per nerve impulse. In general, cyclic nucleotides, phosphodiesterase inhibitors, beta-adrenoceptor agonists, cholinergic nicotinic agonists, and angiotensin are able to enhance neurally mediated norepinephrine release, whereas alpha-adrenoreceptor agonists, cholinergic muscarinic agonists, prostaglandins of the E series, opiates, enkephalins, dopamine, and adenosine inhibit neurally mediated norepinephrine release. Although it has been proposed that cyclic AMP may enhance, and endogenous cyclic GMP may inhibit, neurotransmitter release, no consistent relationship between the effects of the several modulators of neurally mediated norepinephrine release and their effects on adenylate and guanylate cyclase is as yet apparent. The demonstration of whether such a relationship exists must await the development of techniques that will allow the measurement of cyclic nucleotide levels in the presynaptic adrenergic nerve terminal after exposure to the putative modulators of release and consequent to nerve stimulation.  相似文献   

17.
Prostaglandin E1 (PGE1)-mediated transmembrane signal control systems were investigated in intact murine neuroblastoma cells (clone N1E-115). PGE1 increased intracellular levels of total inositol phosphates (IP), cyclic GMP, cyclic AMP, and calcium ([Ca2+]i). PGE1 transiently increased inositol 1,4,5-trisphosphate formation, peaking at 20 s. There was more than a 10-fold difference between the ED50 for PGE1 at cyclic AMP formation (70 nM) and its ED50 values at IP accumulation (1 microM), cyclic GMP formation (2 microM), and [Ca2+]i increase (5 microM). PGE1-mediated IP accumulation, cyclic GMP formation, and [Ca2+]i increase depended on both the concentration of PGE1 and extracellular calcium ions. PGE1 had more potent intrinsic activity in cyclic AMP formation, IP accumulation, and cyclic GMP formation than did PGE2, PGF2 alpha, or PGD2. A protein kinase C activator, 4 beta-phorbol 12 beta-myristate 13 alpha-acetate, had opposite effects on PGE1-mediated IP release and cyclic GMP formation (inhibitory) and cyclic AMP formation (stimulatory). These data suggest that there may be subtypes of the PGE1 receptor in this clone: a high-affinity receptor mediating cyclic AMP formation, and a low-affinity receptor mediating IP accumulation, cyclic GMP formation, and intracellular calcium mobilization.  相似文献   

18.
The glutamate receptor agonist N-methyl-D-aspartate (NMDA) stimulated a rapid, extracellular Ca(2+)-dependent conversion of [3H]arginine to [3H]citrulline in primary cultures of cerebellar granule cells, indicating receptor-mediated activation of nitric oxide (NO) synthase. The NMDA-induced formation of [3H]citrulline reached a plateau within 10 min. Subsequent addition of unlabeled L-arginine resulted in the disappearance of 3H from the citrulline pool, indicating a persistent activation of NO synthase after NMDA receptor stimulation. Glutamate, NMDA, and kainate, but not quisqualate, stimulated both the conversion of [3H]arginine to [3H]citrulline and cyclic GMP accumulation in a dose-dependent manner. Glutamate and NMDA showed similar potencies for the stimulation of [3H]citrulline formation and cyclic GMP synthesis, respectively, whereas kainate was more potent at inducing cyclic GMP accumulation than at stimulating [3H]citrulline formation. Both the [3H]arginine to [3H]citrulline conversion and cyclic GMP synthesis stimulated by NMDA were inhibited by the NMDA receptor antagonist MK-801 and by the inhibitors of NO synthase, NG-monomethyl-L-arginine (MeArg) and NG-nitro-L-arginine (NOArg). However, MeArg, in contrast to NOArg, also potently inhibited [3H]arginine uptake. Kainate (300 microM) stimulated 45Ca2+ influx to the same extent as 100 microM NMDA, but stimulated [3H]citrulline formation to a much lesser extent, which suggests that NO synthase is localized in subcellular compartments where the Ca2+ concentration is regulated mainly by the NMDA receptor.  相似文献   

19.
Various prostaglandins (PGs) (10 nM-30 microM) were added to NG108-15 cells in culture, and changes in the levels of intracellular cyclic GMP and Ca2+ were investigated. Exposure of the cells to PGF2 alpha, PGD2, and PGE2 (10 microM) transiently increased the cyclic GMP content 7.5-, 3.9-, and 3.1-fold, respectively. Furthermore, the increased levels of cyclic GMP correlated well with the rise in cytosolic free Ca2+ concentrations induced by the PGs. Other PGs (10 microM), including metabolites and synthetic analogs, which had no effect on intracellular Ca2+, failed to increase the cyclic GMP content in the cells. When extracellular Ca2+ was depleted from the culture medium, the PG-induced increase in cyclic GMP level was almost completely abolished. In addition, treatment of the cells with quin 2 tetraacetoxymethyl ester dose-dependently inhibited the PG-induced cyclic GMP formation. The increase in cyclic GMP content caused by treatment of the cells with a high K+ level (50 mM) was completely blocked by voltage-dependent Ca2+ entry blockers, such as verapamil (10 microM), nifedipine (1 microM), and diltiazem (100 microM); however, the PG (10 microM)-induced increase in cyclic GMP content was not affected by such Ca2+ entry blockers. These findings indicate that PG-induced cyclic GMP formation may require the rise in intracellular Ca2+ level and that the voltage-dependent Ca2+ channels may not be involved in the PG-induced rise in Ca2+ content.  相似文献   

20.
The intracellular free calcium concentration, [Ca2+]i, has been measured in dog thyroid cells using the fluorescent Ca2+-indicator, quin2. Acetylcholine or its non-hydrolyzable analog, carbamylcholine rapidly increased [Ca2+]i by 40 +/- 4% (mean +/- SE) over the basal level of 81 +/- 2 nM. This increase was totally abolished by atropine, a muscarinic cholinergic receptor blocker, but was not influenced by verapamil, a voltage dependent-calcium channel blocker. Depletion of extracellular Ca2+ by the addition of EGTA, diminished but did not abolish the response to carbamylcholine. These data suggest that cholinergic effectors increase [Ca2+]i by mobilization of Ca2+ from intracellular stores rather than from an influx of Ca2+. Addition of TSH, isoproterenol, phorbol ester, dibutyryl cyclic GMP or cyclic AMP did not elicit any change in [Ca2+]i suggesting that their action may not involve any mobilization of intracellular Ca2+. These data provide direct evidence that in the thyroid cell, cholinergic agents act via their receptors to cause a rapid increase in [Ca2+]i, which may mediate their metabolic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号