首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salicylic acid has been shown to decrease gastric mucosal lesions induced by indomethacin in the rat. In vitro, it has also been shown to counteract the inhibitory effect of indomethacin and aspirin on the cyclooxygenase enzyme system in seminal vesicle microsomes and in platelets and vascular tissue. The hypothesis that the mechanism of salicylic acid "protection" against indomethacin-induced gastric lesions involves interference with indomethacin-induced mucosal cyclooxygenase inhibition was tested. Male, fasted rats were treated with intragastric salicylic acid in doses of 50, 100, 200, 300, or 400 mg/kg concomitantly with a sc injection of 20 mg/kg of indomethacin. Gastric mucosal lesions and mucosal cyclooxygenase activity (as measured by ex vivo prostaglandin F2 alpha synthesis) were examined 3 hr later. Intragastric salicylic acid, 200-400 mg/kg, significantly reduced indomethacin-induced lesion formation, while counteracting significantly indomethacin inhibition of prostaglandin synthesis. Salicylic acid alone did not significantly change cyclooxygenase activity. It is concluded that topical salicylic acid can decrease indomethacin-induced gastric mucosal lesion in the rat, in part, by counteracting the inhibitory effect of indomethacin at the cyclooxygenase level.  相似文献   

2.
Rat gastroduodenal mucosa forms prostaglandin (PG) E2. However, little is known about regional differences in PGE2 formation or the effect of gastric hydrochloric acid (HC1) perfusion on regional PGE2 formation. In this study, the rats were divided into 3 groups. Group 1 received intravenous (i.v.), 1 Ml/h, and intragastric (i.g.), 8 ml/h, perfusions of saline simultaneously for 3 h. Group 2 received saline i.v. and 0.15 N HC1 i.g., 8 ml/h. Group 3 was injected with a bolus of asprin (ASA), 60 mg/kg, followed by ASA, 40 mg/kg/h i.v., and 0.15 N HC1 i.g.. The gastric aspirates were analyzed for volume and pH. Segments of gastroduodenal tissue from the fundus, corpus, antrum, and duodenum were minced and then incubated in 1 ml of 5 mM Tris buffer, pH 8.4, for 30 sec with mixing; the incubate was assayed for PGE2 by radioimmunoassay. Intragastric HC1 decreased the pH of aspirate without producing gastric mucosal lesions. However, when combined with i.v. ASA, ulcer formation was present in all animals (p less than 0.05). PGE2 was formed by isolated tissue from four different gastroduodenal regions. The duodenum formed significantly greater amounts than the fundus, antrum, or corpus, which were similar. Intragastric HC1 produced a trend toward increased PGE2 formation (pmol PGE2/mg tissue) in the fundus, 143 +/- 36 to 237 +/- 57; corpus, 87 +/- 13 to 200 +/- 57; antrum, 157 +/- 28 to 224 +/- 65; and duodenum, 235 +/- 56 to 338 +/- 51. However, statistical significance was not reached.  相似文献   

3.
We investigated the effect of oral administration of CuNSN, a bis(2-benzimidazolyl)thioether (see structure 1) on gastric lesions induced in rats by acetylsalicylic acid (ASA) or ethanol. The involvement of endogenous eicosanoids and nitric oxide in protection by CuNSN was evaluated with indomethacin and NG-nitro-L-arginine (L-NNA), inhibitors of prostaglandin and NO synthesis respectively. L-arginine and its enantiomer D-arginine were also used. Pretreatment with graded doses of CuNSN inhibited ASA- and ethanol-induced mucosal injury. CuNSN increased PGE2 output in rat ex vivo gastric mucosal pieces after administration of 100 mg/kg of ASA. Pretreatment with indomethacin only partially counteracted the protective activity of CuNSN against ethanol-induced damage. L-NNA did not attenuate the protection by CuNSN, which was reduced but not prevented by indomethacin, suggesting that prostanoids contribute to the CuNSN protective effect, together with some mechanism(s) other than NO synthesis.  相似文献   

4.
The effect of the selective cyclo-oxygenase-type-2 (COX-2) inhibitor etodolac on gastric mucosal integrity and gastric acid secretion was investigated in the rat. Etodolac was given in doses comparable with those being used in man for therapy of rheumatic conditions. The effect of etodolac was studied in the presence of a mild barrier breaker and in the presence of increased rates of endogenous acid secretion. In conscious pylorus-ligated rats, etodolac given intragastrically in 16 or 32 mg /kg for 3 h did not by itself give rise to visible gastric mucosal injury. Etodolac, however, exacerbated gastric mucosal injury evoked by intragastric application of acidified sodium taurocholate (5 mM in 150 mM HCl) in a dose-dependent manner. This effect of edotolac was independent of changes in gastric acid secretory responses. In rats whose gastric acid secretion was stimulated by intraperitoneal histamine (5 mg/kg), and etodolac (given i.g. in doses of 16 or 32 mg/kg) also increased gastric mucosal injury caused by histamine dose-dependently in the 3-h pylorus-ligated rats. Etodolac decreased gastric mucus in the saline- and in the sodium taurocholate-treated rats. In urethane-anaesthetized acute gastric fistula rats, intragastric etodolac (32 mg/kg) did not modify basal gastric acid secretion. Our data suggest that etodolac, a selective COX-2 inhibitor, impairs gastric mucosal resistance and can exacerbate gastric mucosal injury caused by other mucosal barrier breaking agents. Cyclooxygenase type-2 thus contributes to the gastric mucosal defences.  相似文献   

5.
Gao Y  Zhou S  Wen J  Huang M  Xu A 《Life sciences》2002,72(6):731-745
Many cytokines, in particular tumor necrosis factor (TNF)-alpha have been known to play an important role in the pathogenesis of gastric mucosal lesions caused by various factors such as drugs and Helicobacter pylori infection. Our previous studies have shown that the polysaccharide fractions isolated from the fruiting bodies of Ganoderma lucidum (GLPS) prevented indomethacin- and acetic acid-induced gastric mucosal lesions in the rat. However, the mechanisms remain unclear. This study aimed to investigate whether GLPS had a direct mucosal healing effect in the indomethacin-treated rat, and to explore the possible mechanisms by determining the gastric mucosal mRNA and protein levels of TNF-alpha and ornithine decarboxylase (ODC) activity. In addition, the effects of GLPS on the cellular proliferation, ODC and c-Myc protein expression and mucus synthesis in the rat gastric cell culture (RGM-1) were examined. The present study demonstrated that GLPS at 250 and 500 mg/kg by intragastric input caused ulcer-healing effect in the rat; this was accompanied with a significant suppression of TNF-alpha gene expression, but with an increased ODC activity. In RGM-1 cells, GLPS at 0.05, 0.25 and 1.0 mg/ml significantly enhanced [3H]thymidine incorporation and ODC activity in a concentration-dependent manner. However, these effects were abrogated by the addition of the ODC inhibitor, DL-alpha-difluoromethyl-ornithine (DFMO). GLPS at 0.25-1.0 mg/ml also increased mucus synthesis, as indicated by the increased D-[6-3H]glucosamine incorporation in RGM-1 cells. Furthermore, GLPS at 0.05-1.0 mg/ml increased the c-Myc protein expression. These findings indicated that GLPS produced a mucosal healing effect in the rat model, perhaps due partly to the suppression of TNF-alpha and induction of c-myc and ODC gene.  相似文献   

6.
The effect of sofalcone, an anti-ulcer agent, on gastric mucosal prostaglandin (PG) metabolism was studied. Gastric mucosal PGE2 was determined in rats in which PGE2 synthesis was inhibited by preadministration of indomethacin. Oral administration of sofalcone at doses of 200 and 400 mg/kg significantly inhibited the PG metabolizing enzyme, 15-hydroxy-PG-dehydrogenase (15-OH-PG-DH) activity and increased PGE2 contents in the rat gastric mucosa. The inhibition of 15-OH-PG-DH activity was accompanied by an increase of PGE2 contents up to 6 hours after the administration of sofalcone. These changes, however, were not observed 12 hours after its administration. Intraperitoneally administered sofalcone also inhibited 15-OH-PG-DH activity and increased PGE2 content. The inhibition of 15-OH-PG-DH activity by sofalcone was noncompetitive and uncompetitive against substrates NAD and PGE1, respectively. These results suggest that the increase of the gastric PGE2 level is mainly due to the inhibition of 15-OH-PG-DH activity, and this increase in PGE2 may be involved in the anti-ulcer effect of sofalcone.  相似文献   

7.
Human recombinant interleukin 1 beta (IL-1) administered intraperitoneally to rats produced the following gastric effects: 1. It was cytoprotective, preventing gastric mucosal necrosis produced by oral administration of one ml of absolute ethanol to fasted animals. The ED50 was 1200 units/kg (110 ng per animal). IL-1 was 125 times more potent than prostaglandin E2 (on a weight basis), and 6,000 times more potent (on a molar basis). 2. The cytoprotective effect of IL-1 was blocked by indomethacin (inhibitor of prostaglandin synthesis) and by IRAP (a specific interleukin-1 receptor antagonist protein). IRAP did not inhibit cytoprotection induced by PGE2. 3. IL-1 prevented the formation of gastric erosions induced by aspirin. 4. IL-1 inhibited gastric secretion (volume, acid concentration and output), in the pylorus-ligated rat, with an ED50 of 300 units/kg (3.2 ng per animal). 5. Indomethacin and IRAP blocked the antisecretory effect of IL-1. 6. IL-1 retarded gastric emptying, an effect blocked by IRAP, but not by indomethacin. 7. IL-1 increased synthesis of prostaglandin E2 by the gastric mucosa by 111%. IL-1 is the most potent of known agents that are gastric cytoprotective, antiulcer, antisecretory, and delay gastric emptying. It appears to act mostly by stimulating the synthesis of prostaglandins by the stomach. These studies suggest that the stomach possesses IL-1 receptors. These are probably located on parietal cells (that produce acid), on prostaglandin-producing cells, on smooth muscle cells (responsible for gastric emptying), and on as yet unidentified cells involved in gastric cytoprotection. Both IL-1 and IRAP, being natural substances, may play a physiological role in the maintenance of gastric mucosal integrity, and in the regulation of acid secretion and gastric motility.  相似文献   

8.
P Tao  D E Wilson 《Prostaglandins》1984,28(3):353-365
The effects of orally administered prostaglandin E2, 16,16-dimethyl prostaglandin E2 and U-46619, an analogue of the prostaglandin endoperoxide PGH2, on gastric secretory volume, acid and mucus were studied in the rat. All of the compounds significantly increased the volume of gastric secretion, mucus secretion, measured as N-acetylneuraminic acid and mucus synthesis measured as the incorporation of [3H]-glucosamine into mucosal glycoprotein; however, only PGE2 and 16,16-dimethyl PGE2 inhibited acid secretion. U-46619, 1.5 mg/kg provided significant protection against ethanol-induced gastric ulcers, an effect that has been previously shown for the other two compounds. These studies provide additional evidence that prostaglandin induced mucosal protection may be related to an effect on mucus and on stimulation of nonparietal cell gastric secretion. Further study of these parameters may be important in the development of antiulcer drugs for long term clinical use.  相似文献   

9.
The mechanism of action of the "mast cell stabilizers" sodium cromoglycate and FPL-52694 as protective agents against ethanol-induced gastric mucosal damage was investigated in the rat. Using an ex vivo gastric chamber model, various concentrations (10-80 mg/mL) of the two agents were applied to the gastric mucosa prior to exposure to 40% ethanol. Both agents significantly reduced ethanol-induced damage in a dose-dependent manner. When given orally (80 mg/kg) both agents significantly reduced gastric damage induced by subsequent oral administration of absolute ethanol. Pretreatment with indomethacin did not significantly affect the protection afforded by FPL-52694, but did cause a partial reversal of the protective effect of sodium cromoglycate. Changes in gastric leukotriene C4 synthesis did not correlate with the protective effects of the two agents. Both mucosal and connective tissue mast cell numbers were significantly reduced following oral ethanol administration. In the groups pretreated with FPL-52694 or sodium cromoglycate, mucosal mast cell numbers were not significantly different from those in rats not treated with ethanol. Furthermore, the connective tissue mast cell numbers were significantly lower than in ethanol-treated control rats, despite a greater than 95% reduction of ethanol-induced hemorrhagic damage. These results therefore suggest that stimulation of gastric prostaglandin synthesis is not important in the mechanism of action of FPL-52694, and neither agent appears to reduce damage through a mechanism related to effects on gastric leukotriene C4 synthesis. The present studies further suggest that the protection afforded by pretreatment with sodium cromoglycate or FPL-52694 may be unrelated to effects of these agents on the connective tissue mast cell population in the stomach.  相似文献   

10.
Studies have shown that reactive oxygen metabolites and lipid peroxidation play important roles in ischemia-reperfusion injury in many organs such as heart, brain and stomach. The aim of this study is to evaluate the antioxidant effect of L-carnitine on gastric mucosal barrier, lipid peroxidation and the activities of antioxidant enzymes in rat gastric mucosa subjected to ischemia-reperfusion injury. Rats were subjected to 30 min of ischemia followed by 60 min of reperfusion. L-carnitine (100 mg/kg), was given to rats intravenously five minutes before the ischemia. In our experiment, lesion index, thiobarbituric acid reactive substances, prostaglandin E2 and mucus content in gastric tissue were measured. The results indicated that the lesion index and the formation of thiobarbituric acid reactive substances increased significantly with the ischemia-reperfusion injury in the gastric mucosa. L-carnitine treatment reduced these parameters to the values of sham operated rats. The tissue catalase and superoxide dismutase activities and prostaglandin E2 production decreased significantly in the gastric mucosa of rats exposed to ischemia-reperfusion. L-carnitine pretreatment increased the tissue catalase activity and prostaglandin E2 to the levels of sham-operated rats but did not change superoxide dismutase activity. There were no significant difference in glutathione peroxidase activity and mucus content between the groups in the gastric mucosa. In summary, L-carnitine pretreatment protected gastric mucosa from ischemia-reperfusion injury by its decreasing effect on lipid peroxidation and by preventing the decrease in prostaglandin E2 content of gastric mucosa.  相似文献   

11.
In humans eicosapentaenoic acid can be converted to 3-series prostaglandins (PGF3 alpha, PGI3, and PGE3). Whether 3-series prostaglandins can protect the gastric mucosa from injury as effectively as their 2-series analogs is unknown. Therefore, we compared the protective effects of PGF3 alpha and PGF2 alpha against gross and microscopic gastric mucosal injury in rats. Animals received a subcutaneous injection of either PGF3 alpha or PGF2 alpha in doses ranging from 0 (vehicle) to 16.8 mumol/kg and 30 min later they received intragastric administration of 1 ml of absolute ethanol. Whether mucosal injury was assessed 60 min or 5 min after ethanol, PGF3 alpha was significantly less protective against ethanol-induced damage than PGF2 alpha. These findings indicate that the presence of a third double bond in the prostaglandin F molecule between carbons 17 and 18 markedly reduces the protective effects of this prostaglandin on the gastric mucosa.  相似文献   

12.
The aim of this study was to investigate the effects of peripherally injected glucagon like peptide-1 (GLP-1) on ethanol-induced gastric mucosal damage and the mechanisms included in the effect. Absolute ethanol was administered through an orogastric cannula right after the injection of GLP-1 (1, 10, 100, 1000 or 10,000 ng/kg; i.p.). The rats were decapitated an hour later, the stomachs removed and the gastric mucosal damage scored. 1000 ng GLP-1 inhibited gastric mucosal damage by 45% and 10,000 ng GLP-1 by 60%. The specific receptor antagonist exendin-(9-39) (2500 ng/kg; i.p.), calcitonin gene related peptide (CGRP) receptor antagonist CGRP-(8-37) (10 microg/kg; i.p.), nitric oxide (NO) synthase inhibitor l-NAME (30 mg/kg; s.c.) and cyclooxygenase inhibitor indomethacin (5 mg/kg; i.p.) inhibited the preventive effect of GLP-1 on ethanol-induced gastric mucosal damage. GLP-1 also prevented the decrease in gastric mucosal blood flow caused by ethanol when administered at gastroprotective doses (1000 and 10,000 ng/kg; i.p.). In conclusion, GLP-1 administered peripherally prevents the gastric mucosal damage caused by ethanol in rats. CGRP, NO, prostaglandin and gastric mucosal blood flow are thought to play a role in this effect, mediated through receptors specific to GLP-1.  相似文献   

13.
We recently investigated the effects of the major proteins in cow's milk on gastric mucosal injuries in rat ulcer models. We found that alpha-lactalbumin (alpha-LA) has marked preventive effects against gastric mucosal injuries and that prostaglandin (PG) synthesis may contribute to these effects [Matsumoto et al., Biosci. Biotechnol. Biochem., 65, 1104-1111, 2001]. In this study, we investigated the effects of alpha-LA on several defense mechanisms of gastric mucosa by evaluating gastric PGE2 content, gastric mucin content, gastric luminal pH, gastric fluid volume, and gastric emptying in naive rats. Oral administration of alpha-LA (200, 500, and 1000 mg/kg) elevated endogenous PGE2 levels in gastric tissue and increased the gastric mucin contents of both the gastric fluid and the adherent mucus gel layer. In addition to these PG-related responses, alpha-LA also caused PG-independent responses such as elevation of gastric luminal pH, increase in gastric fluid volume, and delay in gastric emptying. These responses were observed to be dose-dependent (200-1000 mg/kg of alpha-LA). Thus, we demonstrated that alpha-LA enhances both PG-dependent and PG-independent gastric defense mechanisms in naive rats. Both of these mechanisms are probably involved in its gastroprotective action.  相似文献   

14.
The effects of orally administered prostaglandin E2, 16,16-dimethyl prostaglandin E2 and U-46619, an analogue of the prostaglandin endoperoxide PGH2, on gastric secretory volume, acid and mucus were studied in the rat. All of the compounds significantly increased the volume of gastric secretion, mucus secretion, measured as N-acetylneuraminic acid and mucus synthesis measured as the incorporation of [3H]-glucosamine into mucosal glycoprotein; however, only PGE2 and 16,16-dimethyl PGE2 inhibited acid secretion. U-46619, 1.5 mg/kg provided significant protection against ethanol-induced gastric ulcers, an effect that has been previously shown for the other two compounds. These studies provide additional evidence that prostaglandin induced mucosal protection may by related to an effect on mucus and on stimulation of nonparietal cell gastric secretion. Further study of these parameters may be important in the development of antiulcer drugs for long term clinical use.  相似文献   

15.
The aim of this study was to evaluate the effects of intragastrically given pectin-induced physicochemical properties and actions on active gastric acid secretion and on the development of ethanol- and aspirin-induced gastric mucosal lesions. The observations were carried out on CFY-strain rats, fasted for 24 h before the experiments with water ad libitum. The observations were carried out in two experimental series. A) The gastric mucosal lesions were produced by intragastrically given 96% ethanol or aspirin prepared with 0.2 M HCl. Different doses of pectin (100, 50 and 25 mg x kg(-1), respectively) were administered intragastrically 30 min before giving necrotizing agents. The number of gastric lesions was noted 1 h after the administration, while the severity of gastric mucosal lesions was scored by semi-quantitative scale. B) The effects of pectin were studied on the volume and H+ secretion of the stomach in 4-h pylorus-ligated rats. It has been found that: 1) the gastric mucosal lesions could be produced in 100% of rats by the application of both necrotizing agents. 2) Pectin in doses of 50-100 mg x kg(-1) increased the number of gastric mucosal lesions in both models, while no increase was produced by the application of 25-mg x kg(-1) dose. 3) The severity of mucosal lesions increased significantly after the administration of all doses of pectin. 4) The pectin-induced increase of gastric lesions (number) showed a dose-response effect. 5) The pectin produced a significant increase in the volume of gastric secretion and gastric H+ secretion. It has been concluded that: a) pectin-induced physicochemical changes are able to enhance the aggression to gastric mucosa produced by ethanol and aspirin; b) a positive correlation exists between the linkage of H+ to pectin and significant active metabolic response in the rat stomach; c) pectin alone stimulates the active metabolic process of the gastric H+ secretion.  相似文献   

16.
Tashima K  Fujita A  Takeuchi K 《Life sciences》2000,67(14):1707-1718
We examined the influence of diabetes on ischemia/reperfusion-induced gastric damage in rats, in relation to the antioxidative system. Animals were injected with streptozotocin (STZ: 70 mg/kg, i.p.) and used after 5 weeks of diabetes with blood glucose levels of >350 mg/dl. Gastric mucosal blood flow (GMBF) was measured before, during and after 20 min of ischemia (1.5 ml bleeding per 100 g body weight from the carotid artery) followed by a 15-min reperfusion in the presence of acid (100 mM HCI). At the end of each experiment, gastric damage was observed macroscopically. GMBF was reduced by ischemia in all groups of rats, followed by a gradual return after reperfusion. Ischemia/reperfusion produced hemorrhagic lesions in normal rat stomachs in the presence of 100 mM HCl. These lesions were significantly aggravated when the animals were pretreated with diethyldithiocarbamate, an inhibitor of superoxide dismutase (SOD). Ischemia/reperfusion-induced damage was also markedly exacerbated in STZ-diabetic rats, but this aggravation was significantly suppressed by pretreatment with exogenous SOD or glutathione (GSH). Diabetic rat stomachs showed significantly less SOD activity as well as GSH content than normal rat stomachs. In addition, the deleterious influence of diabetes on the gastric ulcerogenic response to ischemia/reperfusion was significantly mitigated by decreasing the blood glucose levels by daily insulin treatment. These results suggest that the gastric mucosa of diabetic rats is more vulnerable to ischemia/reperfusion-induced injury, and the mechanism may be partly accounted for by impairment of the antioxidative system associated with a reduced SOD activity and GSH content.  相似文献   

17.
BACKGROUND: Our laboratory group observed earlier that the gastric mucosal cytoprotective effect of prostacyclin (PGI(2)) disappeared after surgical vagotomy in rats. Similarly to this, the beta-carotene induced gastric cytoprotection disappeared in adrenalectomized rats too. AIMS: In these studies we aimed to investigate the possible role of vagal nerve and adrenals in the development of gastric mucosal lesions induced by exogenously administered chemicals (ethanol, HCl, NaOH, NaCl and indomethacin), and on the effects of cytoprotective and antisecretory drugs (atropine, cimetidine), and scavengers (vitamin A and beta-carotene). METHODS: The observations were carried out in fasted CFY strain rats. The gastric mucosal lesions were produced by intragastric (i.g.) administration of narcotising agents (96% ethanol; 0.6 M HCl; 0.2 M NaOH; 25% NaCl) or subcutaneously (s.c.) administered indomethacin (20 mg/kg) in intact, surgically bilaterally vagatomized, and adrenalectomized rats without or with glucocorticoid supplementation (Oradexon, 0.6 mg/kg given i.m. for 1 week). The gastric mucosal protective effect of antisecretory doses of atropine (0.1-0.5-1.0 mg/kg i.g.) and cimetidine (10-25-50 mg/kg i.g.), and vitamin A and beta-carotene (0.01-0.1-1.0-10 mg/kg i.g.) was studied. The number and severity of mucosal gastric lesions was numerically or semiquantitatively measured. In other series of observations the gastric acid secretion and mucosal damage were studied in 24 h pylorus-ligated rats without and with acute bilateral surgical vagotomy. RESULTS: It was found that: (1) the chemical-induced gastric mucosal damage was enhanced in vagotomized and adrenalectomized rats, meanwhile the endogenous secretion of gastric acid, and the development of mucosal damage can be prevented by surgical vagotomy; (2) the gastric cyto- and general protection produced by the drugs and scavengers disappeared in vagotomized and adrenalectomized rats; (3) the gastric mucosal protective effects of drugs and of scavengers returned after sufficient glucocorticoid supplementation of the rats. CONCLUSION: It has been concluded that the intact vagal nerve and adrenals have a key role in the gastric mucosal integrity, and in drugs- and scavengers-induced gastric cyto- and general mucosal protection.  相似文献   

18.
《Journal of Physiology》1996,90(2):63-73
The effect of cysteamine on gastric blood flow and on the indomethacin-induced gastric mucosal damage was studied. In anesthetized rats, cysteamine (280 mg/kg) given subcutaneously (sc) decreased gastric blood flow measured by the laser Doppler flowmetry technique. In contrast, cysteamine (1–60 mg/ml) applied topically to the serosal surface of the stomach evoked a concentration-dependent and long-lasting increase in gastric blood flow. At 60 mg/ml, cysteamine increased blood flow by 166.8 ± 26.1% of predrug control value. Pretreatment with indomethacin (20 mg/kg, sc), intravenous (iv) atropine (1 mg/kg), propranolol (1 mg/kg, iv), combined H1 and H2-blockade or bilateral cervical vagotomy alone or combined with iv guanethidine (8 mg/kg), or pretreatment with the capsaicin analogue resiniferatoxin did not reduce the vasodilator response to cysteamine. The vasodilator response to topical capsaicin, was not reduced after sc cysteamine (280 mg/kg) pretreatment. In conscious pylorus-ligated rats, sc cysteamine (100 or 280 mg/kg) given simultaneously with indomethacin inhibited gastric acid output but had variable effects on the indomethacin-induced gastric mucosal damage. Cysteamine (100 or 280 mg/kg) administered sc 4 h prior to indomethacin enhanced gastric injury by sc indomethacin, but did not prevent the gastroprotective action of capsaicin. In contrast, orally administered cysteamine (60 mg/ml) reduced gastric injury induced by sc indomethacin plus intragastric HCl. These data provide the first evidence for the effect of cysteamine on gastric microcirculation in the rat and suggest a direct vasodilator effect for topical cysteamine. The microvascular effects of cysteamine are largely responsible for the different effects of this agent on experimental gastric injury.  相似文献   

19.
Gastric ulcerogenicity and depletion of endogenous prostaglandins (PGs) content induced by tiaprofenic acid, dicrofenac and indomethacin were examined using the same antiinflammatory effective doses. Male Wistar rats were given each of these drugs intragastrically 24, 18, and 3 hrs before sacrifice in the following doses (mg/kg): indomethacin (0.8, 4 and 20); tiaprofenic acid (1.2, 6 and 30); dicrofenac (0.8, 4 and 20). Endogenous prostacyclin (PGI2) and PGE2 in fundic mucosa were determined by radioimmunoassay. The three compounds produced fundic mucosal lesions in a dose-dependent manner. However, tiaprofenic acid and dicrofenac were both less potent than indomethacin in producing gastric mucosal lesions at similar antiinflammatory doses. Mucosal PGE2 content was abolished by the three compounds in the following doses (mg/kg): indomethacin (4 and 20); tiaprofenic acid (6 and 30); dicrofenac (20). Mucosal PGI2 was maintained around 50% of the control value in rats given tiaprofenic acid in a dose of 6 mg/kg or dicrofenac in a dose of 4 mg/kg, while indomethacin in a dose of 4 mg/kg markedly reduced mucosal PGI2 to 17% of the control value. In larger doses, tiaprofenic acid and dicrofenac were also significantly less potent in reducing mucosal PGI2 than indomethacin. These results suggest that the difference in ulcerogenicity between indomethacin and the other two compounds was closely related to their potency in decreasing PGI2 in the gastric (fundic) mucosa.  相似文献   

20.
The effect of three--structurally different--groups of compounds was compared against gastric mucosal damages induced by ethanol or prostaglandin (PG) synthesis inhibitors, as well as against carrageenan-induced inflammation. All the compounds studied--SH-compounds (cysteamine, 2,3-dimercaptosuccinic acid, D,L-penicillamine), SH-blocking N-ethylmaleimide (NEM) and morphine-exerted dose-dependent inhibition on carrageenan edema test and against ethanol-induced gastric damage. Mucosal lesions induced by PG synthesis inhibitors (indomethacin 20 mg/kg, naproxen 75 mg/kg, piroxicam 60 mg/kg) were inhibited by drugs studied when the compounds were given before the damaging agents. However, when the drugs were injected 1 h after the inhibitors of PG synthesis opposite actions were observed; SH-compounds exerted protective, while NEM (2 mg/kg p.o.) and morphine (5 mg/kg p.o.) aggravating action. The results suggest that: 1. SH-compounds might have therapeutic importance in the treatment of gastric damage induced by prostaglandin synthesis inhibitors. 2. Reconsideration of the use of the term "cytoprotection" is necessary, since "cytoprotective" agents may aggravate mucosal damage in other ulcer model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号