首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have previously shown that hMSH2-hMSH6 contains an intrinsic ATPase which is activated by mismatch-provoked ADP-->ATP exchange that coordinately induces the formation of a sliding clamp capable of hydrolysis-independent diffusion along the DNA backbone (1,2). These studies suggested that mismatch repair could be propagated by a signaling event transduced via diffusion of ATP-bound hMSH2-hMSH6 molecular switches to the DNA repair machinery. The Molecular Switch model (Fishel, R. (1998) Genes Dev. 12, 2096-2101) is considerably different than the Hydrolysis-Driven Translocation model (Blackwell, L. J., Martik, D., Bjornson, K. P., Bjornson, E. S., and Modrich, P. (1998) J. Biol. Chem. 273, 32055-32062) and makes additional testable predictions beyond the demonstration of hydrolysis-independent diffusion (Gradia, S., Subramanian, D., Wilson, T., Acharya, S., Makhov, A., Griffith, J., and Fishel, R. (1999) Mol. Cell 3, 255-261): (i) individual mismatch-provoked ADP-->ATP exchange should be unique and rate-limiting, and (ii) the k(cat x DNA) for the DNA-stimulated ATPase activity should decrease with increasing chain length. Here we have examined hMSH2-hMSH6 affinity and ATPase stimulatory activity for several DNA substrates containing mispaired nucleotides as well as the chain length dependence of a defined mismatch under physiological conditions. We find that the results are most consistent with the predictions of the Molecular Switch model.  相似文献   

2.
We have previously demonstrated that the human heterodimeric meiosis-specific MutS homologs, hMSH4-hMSH5, bind uniquely to a Holliday Junction and its developmental progenitor (Snowden, T., Acharya, S., Butz, C., Berardini, M., and Fishel, R. (2004) Mol. Cell 15, 437-451). ATP binding by hMSH4-hMSH5 resulted in the formation of a sliding clamp that dissociated from the Holliday Junction crossover region embracing two duplex DNA arms. The loading of multiple hMSH4-hMSH5 sliding clamps was anticipated to stabilize the interaction between parental chromosomes during meiosis double-stranded break repair. Here we have identified the interaction region between the individual subunits of hMSH4-hMSH5 that are likely involved in clamp formation and show that each subunit of the heterodimer binds ATP. We have determined that ADP-->ATP exchange is uniquely provoked by Holliday Junction recognition. Moreover, the hydrolysis of ATP by hMSH4-hMSH5 appears to occur after the complex transits the open ends of model Holliday Junction oligonucleotides. Finally, we have identified several components of the double-stranded break repair machinery that strongly interact with hMSH4-hMSH5. These results further underline the function(s) and interactors of hMSH4-hMSH5 that ensure accurate chromosomal repair and segregation during meiosis.  相似文献   

3.
hMSH2-hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA   总被引:8,自引:0,他引:8  
Mismatch recognition by the human MutS homologs hMSH2-hMSH6 is regulated by adenosine nucleotide binding, supporting the hypothesis that it functions as a molecular switch. Here we show that ATP-induced release of hMSH2-hMSH6 from mismatched DNA is prevented if the ends are blocked or if the DNA is circular. We demonstrate that mismmatched DNA provokes ADP-->ATP exchange, resulting in a discernible conformational transition that converts hMSH2-hMSH6 into a sliding clamp capable of hydrolysis-independent diffusion along the DNA backbone. Our results support a model for bidirectional mismatch repair in which stochastic loading of multiple ATP-bound hMSH2-hMSH6 sliding clamps onto mismatch-containing DNA leads to activation of the repair machinery and/or other signaling effectors similar to G protein switches.  相似文献   

4.
Bcl2 has been reported to suppress DNA mismatch repair (MMR) with promotion of mutagenesis, but the mechanism(s) is not fully understood. MutSalpha is the hMSH2-hMSH6 heterodimer that primarily functions to correct mutations that escape the proofreading activity of DNA polymerase. Here we have discovered that Bcl2 potently suppresses MMR in association with decreased MutSalpha activity and increased mutagenesis. Exposure of cells to nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone results in accumulation of Bcl2 in the nucleus, which interacts with hMSH6 but not hMSH2 via its BH4 domain. Deletion of the BH4 domain from Bcl2 abrogates the ability of Bcl2 to interact with hMSH6 and is associated with enhanced MMR efficiency and decreased mutation frequency. Overexpression of Bcl2 reduces formation of the hMSH2-hMSH6 complex in cells, and purified Bcl2 protein directly disrupts the hMSH2-hMSH6 complex and suppresses MMR in vitro. Importantly, depletion of endogenous Bcl2 by RNA interference enhances formation of the hMSH2-hMSH6 complex in association with increased MMR and decreased mutagenesis. Thus, Bcl2 suppression of MMR may occur in a novel mechanism by directly regulating the heterodimeric hMSH2-hMSH6 complex, which potentially contributes to genetic instability and carcinogenesis.  相似文献   

5.
O6-alkylguanine-DNA alkyltransferase (AGT) is a single-cycle DNA repair enzyme that removes pro-mutagenic O6-alkylguanine adducts from DNA. Its functions with short single-stranded and duplex substrates have been characterized, but its ability to act on other DNA structures remains poorly understood. Here, we examine the functions of this enzyme on O6-methylguanine (6mG) adducts in the four-stranded structure of the human telomeric G-quadruplex. On a folded 22-nt G-quadruplex substrate, binding saturated at 2 AGT:DNA, significantly less than the ∼5 AGT:DNA found with linear single-stranded DNAs of similar length, and less than the value found with the telomere sequence under conditions that inhibit quadruplex formation (4 AGT:DNA). Despite these differences, AGT repaired 6mG adducts located within folded G-quadruplexes, at rates that were comparable to those found for a duplex DNA substrate under analogous conditions. Repair was kinetically biphasic with the amplitudes of rapid and slow phases dependent on the position of the adduct within the G-quadruplex: in general, adducts located in the top or bottom tetrads of a quadruplex stack exhibited more rapid-phase repair than did adducts located in the inner tetrad. This distinction may reflect differences in the conformational dynamics of 6mG residues in G-quadruplex DNAs.  相似文献   

6.
MSH2-MSH3 directs the repair of insertion/deletion loops of up to 13 nucleotides in vivo and in vitro. To examine the biochemical basis of this repair specificity, we characterized the mispair binding and ATPase activity of hMSH2-hMSH3. The ATPase was found to be regulated by a mismatch-stimulated ADP --> ATP exchange, which induces a conformational transition by the protein complex. We demonstrated strong binding of hMSH2-hMSH3 to an insertion/deletion loop containing 24 nucleotides that is incapable of provoking ADP --> ATP exchange, suggesting that mismatch recognition appears to be necessary but not sufficient to induce the intrinsic ATPase. These studies support the idea that hMSH2-hMSH3 functions as an adenosine nucleotide-regulated molecular switch that must be activated by mismatched nucleotides for classical mismatch repair to occur.  相似文献   

7.
Mutations were induced in the ampicillinase gene of a bacteriophage f1/pBR322 chimera both by incorporation of O6-methyl-dGTP opposite T during DNA replication in vitro and by site-directed mutagenesis using O6-methylguanine-containing oligonucleotides. After passage of the DNA through Escherichia coli, analysis of 151 O6-methyl-dGTP-induced mutations indicated a significantly greater number of unmutated mutation sites than expected, whereas the mutated sites generally fit a Poisson distribution. The unmutated sites are assumed to be caused by the inability of some sequences to tolerate the presence of a tetrahedral methyl group within the confines of a Watson-Crick helix (Toorchen, D., and Topal, M.D. (1983) Carcinogenesis 4, 1591-1597). A consensus of the DNA sequences surrounding unmutated mutation sites was derived. The consensus sequence had significant similarity to the region of the rat Harvey ras oncogene containing the N-methyl-N-nitrosourea activated site for transformation (Zarbl, H., Sukumar, S., Arthur, A. V., Dionisio, M.-Z., and Barbacid, M. (1985) Nature 315, 382-385). We propose that direct alkylation at O6 of a guanine present within the consensus sequence may produce a DNA conformation less subject to repair. Mutation by O6-methylguanine-containing oligonucleotides demonstrated that repair of the O6-methylguanine lesions varied at least 3-4-fold with position of the lesion.  相似文献   

8.
This work describes the determination of N3-methyladenine, N7-methylguanine and O(6)-methylguanine adducts in dimethyl sulphate-treated salmon-testes DNA employing reversed-phase high performance liquid chromatography (RP-HPLC) with UV-vis detection, followed by mass-spectrometric verification using electrospray ionisation in positive mode ESI(+). Within validation parameters, accuracy, precision, calibration parameters, limit of detection (LOD) and quantitation (LOQ) as well as stability of standard stock solutions were tested and presented for UV/vis detection. The limit of detection (LOD) was found to be 0.1 ng/mL for N3-methyladenine and 0.2 ng/mL for both N7-methylguanine and O(6)-methylguanine (S/N=3). The limit of quantitation (LOQ) was found to be 0.5 ng/mL for all measured compounds, (S/N=10). Quantitative results were obtained for each substance based on eight-point calibration. Intra- and inter-day precisions were within 1.73-6.96 and 2.26-7.58%, respectively, and correlation coefficients of calibration curves (R(2)) ranged from 0.9992 to 0.9997. Relative proportion of N7-methylguanine was accounted for 61.53+/-2.97% (R.S.D.=4.8), N3-methyladenine for 38.19+/-2.99% (R.S.D.=9.6) and O(6)-methylguanine for 0.29+/-0.02% (R.S.D.=5.1), respectively. The application of the above-mentioned techniques provides a valuable contribution for simultaneous determination of methylated DNA adducts, and may represent a suitable approach for similar monitoring/screening studies.  相似文献   

9.
W T Briscoe  J Spizizen  E M Tan 《Biochemistry》1978,17(10):1896-1901
Antibodies to O6-methyldeoxyguanosine were produced in rabbits and utilized in a radioimmunoassay to detect this nucleoside at picomole levels. The specificity of the antibodies was demonstrated by the use of nucleoside analogues as inhibitors in the radioimmunoassay. The antibodies cross-reacted with O6-methylguanosine, O6-methylguanine, and O6-ethylguanosine. There was 10(4) to 10(6) times less sensitivity to inhibition by deoxyadenosine, deoxyguanosine, and guanosine than by O6-methyldeoxyguanosine. The radioimmunoassay also detected O6-methylguanine in DNA alkylated by agents known to produce O6-methylguanine, such as N'-methyl-N-nitrosourea. DNA alkylated with dimethyl sulfate, which does not produce O6-methylguanine in DNA, cross-reacted with the antibodies to a very limited extent. Such an assay system for modified nucleic acid components would be very useful in following the production, persistence, and repair of these lesions in a variety of cells and tissues treated with a broad spectrum of carcinogens and suspected carcinogens.  相似文献   

10.
A methodology has been developed and validated for the simultaneous quantitation of O6-methyl- and 7-methylguanine in DNA isolated from in vitro exposure to the model alkylating agents: N-methyl-N-nitrosourea (MNU) and methyl methane sulfonate (MMS). After exposure, DNA was isolated and directly hydrolyzed under acid conditions to hydrolytes containing DNA bases (modified and unmodified). The hydrolytes were used for direct O6- and 7-methylguanine quantitation using a rapid and selective liquid chromatography-electrospray tandem mass spectrometry (LC/ESI-MS/MS). The lower limits of quantitation for O6-methyl- and 7-methylguanine were 75.8 and 151.5 fmol, respectively. Linearity of the calibration curve was greater than 0.999 from 75.8 to 151,600.0 fmol for O6-methylguanine and 0.999 from 151.5 to 303,200.0 fmol for 7-methylguanine. The intra-day assay precision relative standard deviation (R.S.D.) values for O6-methylguanine for quality control (QC) samples were < or =9.2% with accuracy values ranging from 90.8 to 118%, and for 7-methylguanine the R.S.D. values for QC samples were < or =11%, with accuracy values ranging from 92.9 to 119%. The inter-day assay precision (R.S.D.) values for O6-methylguanine QC samples were < or =7.9% with accuracy values ranging from 94.5 to 116%, and for 7-methylguanine QC samples were < or =7.1% with accuracy values ranging from 95.2 to 110.2%. This method was used for simultaneous determination of the levels of 7-methyl- and O6-methylguanine in DNA acidic hydrolytes present in a series of incubations from salmon testis DNA treated with either MNU or MMS.  相似文献   

11.
The mutagenic effects of several ethylating and methylating agents were assessed in Encherichia coli strains that are defective in the adaptive response to alkylating agents. These mutants were either deficient in the response or expressed it constitutively. When expressed, the repair pathway removed the major mutagenic lesion produced by either methylating or ethylating agents. This lesion was almost certainly O6-alkylguanine produced by alkylation of DNA, and the mechanism for its removal was characterized in vitro. E. coli cells expressing the adaptive response contain relatively large amounts of a protein that transfers the methyl group from O6-methylguanine to one of its own cysteine residues (Olsson & Lindahl, 1980). This methyltransferase was shown to act in an analogous fashion on O6-ethylguanine. Incubation of ethylated DNA with purified transferase led to disappearance of the O6-ethylguanine residues, and S-ethylcysteine was simultaneously generated in the protein. The greater sensitivity of E. coli wild-type to ethylating than methylating agents may be explained by a slower repair of O6-ethylguanine than O6-methylguanine and also a weaker ability of ethylating agents to induce the adaptive response.  相似文献   

12.
13.
The ability of the tumor suppressor protein, p53, to recognize certain types of DNA lesions may represent one of the mechanisms by which this protein modulates cellular response to DNA damage. p53 DNA binding properties are regulated by several factors, such as post-translational modifications including phosphorylation and acetylation, regulation by its own C-terminal domain and interactions with other cellular proteins. Substrates resembling Holliday junctions and extra base bulges were used to study the effect of three nuclear proteins, HMG-1, HMG I(Y) and hMSH2–hMSH6, on the lesion binding properties of p53. Gel retardation assays revealed that the three proteins had varying effects on p53 binding to these substrates. HMG-1 did not influence p53 binding to Holliday junctions or 3-cytosine bulges. HMG I(Y) rapidly dissociated p53 complexes with Holliday junctions but not 3-cytosine bulges. Finally, the mismatch repair protein complex, hMSH2–hMSH6, enhanced p53 binding to both substrates by 3–4-fold. Together, these results demonstrate that p53 DNA binding activity is highly influenced by the presence of other proteins, some having a dominant effect while others have a negative effect.  相似文献   

14.
15.
S(N)1-type alkylating agents that produce cytotoxic O(6)-methyl-G (O(6)-meG) DNA adducts induce cell cycle arrest and apoptosis in a manner requiring the DNA mismatch repair (MMR) proteins MutSalpha and MutLalpha. Here, we show that checkpoint signaling in response to DNA methylation occurs during S phase and requires DNA replication that gives rise to O(6)-meG/T mispairs. DNA binding studies reveal that MutSalpha specifically recognizes O(6)-meG/T mispairs, but not O(6)-meG/C. In an in vitro assay, ATR-ATRIP, but not RPA, is preferentially recruited to O(6)-meG/T mismatches in a MutSalpha- and MutLalpha-dependent manner. Furthermore, ATR kinase is activated to phosphorylate Chk1 in the presence of O(6)-meG/T mispairs and MMR proteins. These results suggest that MMR proteins can act as direct sensors of methylation damage and help recruit ATR-ATRIP to sites of cytotoxic O(6)-meG adducts to initiate ATR checkpoint signaling.  相似文献   

16.
Methylating agents are potent carcinogens that are mutagenic and cytotoxic towards bacteria and mammalian cells. Their effects can be ascribed to an ability to modify DNA covalently. Pioneering studies of the chemical reactivity of methylating agents towards DNA components and their effectiveness as animal carcinogens identified O6-methylguanine (O6meG) as a potentially important DNA lesion. Subsequent analysis of the effects of methylating carcinogens in bacteria and cultured mammalian cells — including the discovery of the inducible adaptive response to alkylating agents in Escherichia coli — have defined the contributions of O6meG and other methylated DNA bases to the biological effects of these chemicals. More recently, the role of O6meG in killing mammalian cells has been revealed by the lethal interaction between persistent DNA O6meG and the mismatch repair pathway. Here, we briefly review the results which led to the identification of the biological consequences of persistent DNA O6meG. We consider the possible consequences for a human cell of chronic exposure to low levels of a methylating agent. Such exposure may increase the probability that the cell's mismatch repair pathway becomes inactive. Loss of mismatch repair predisposes the cell to mutation induction, not only through uncorrected replication errors but also by methylating agents and other mutagens.  相似文献   

17.
The DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT) repairs the promutagenic O6-methylguanine lesion by transferring the methyl group to a cysteine residue on the protein. A mechanism in which AGT activates the guanyl moiety as a leaving group by protonation of a heteroatom on guanine was probed by reacting AGT with analogues of O6-methylguanine in which the heteroatoms were changed. The initial rates of reaction were measured at various substrate concentrations in 50 mM Hepes, 1 mM EDTA, 1 mM DTT, and 10% glycerol, pH 7.8 at 37 degrees C. The kinact (h-1) and Kin (mM) were determined for O6-methylguanine (1.66 +/- 0.19, 1.51 +/- 0.32), 6-methoxypurine (1.07 +/- 0.25, 10.6 +/- 4.2), S6-methyl-6-thioguanine (0.63 +/- 0.04, 1.17 +/- 0.18), 6-methylthiopurine (no reaction), Se6-methyl-6-selenoguanine (1.76 +/- 0.28, 10.6 +/- 5.0), 6-methylselenopurine (2.51 +/- 0.62, 15.7 +/- 6.3), O6-methyl-1-deazaguanine (1.71 +/- 0.34, 14.8 +/- 4.4), O6-methyl-3-deazaguanine (1.90 +/- 0.24, 2.54 +/- 0.59), and O6-methyl-7-deazaguanine (1.97 +/- 0.26, 2.56 +/- 0.72). These results indicate that replacement of the nitrogens does not affect the kinact parameter but the Kin is increased upon removal of the exocyclic amino group and the nitrogen at the 1-position. Replacement of the oxygen with sulfur decreases the kinact, and replacement with selenium increases the Kin. The results are consistent with a mechanism in which O6-methylguanine binds to the active site of AGT with hydrogen bonds to the oxygen, the exocyclic amino group, and the nitrogen at the 1-position of the substrate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The activity of the DNA repair protein O6-methylguanine DNA methyltransferase (MT) was compared in liver extracts from female ICR and male C57BL/6 mice at various ages (3-130 weeks old). Similar patterns of overall enzyme activity were observed in both strains with O6-MT activity being relatively low in young mice (3 or 8 weeks old). However, the activity significantly increased after adolescence (middle age), thereafter decreasing with old age (over 100 weeks old) to a level equivalent to that found in young mice. In an additional strain difference study, O6-MT activities in liver extracts from 4 strains of mice were compared at 5 and 30 weeks of age. Although a similar age-associated increase of enzyme activity in adolescence was confirmed in all 4 strains investigated, the closed-colony ICR mice differed from the inbred strains in demonstrating significantly higher levels of O6-MT activity in females than in males. However, the same tendency was also observed in a comparison of the sexes in 30-week-old C3H/HeN, C57BL/6 and BALB/c mice.  相似文献   

19.
20.
S L Ginell  S Kuzmich  R A Jones  H M Berman 《Biochemistry》1990,29(46):10461-10465
The crystal and molecular structure of the first DNA duplex containing the carcinogenic lesion O6MeG has been determined to a resolution of 1.9 A and refined to an R factor of 19%. (d[CGC-(O6Me)GCG])2 crystallizes in the left-handed Z DNA form and has crystal parameters and conformational features similar to those of the parent sequence [d(CG)3]2. The methyl groups on O6 of G4 and G10 have C5-C6-O6-O6Me torsion angles of 73 degrees and 56 degrees, respectively, and protrude onto the major groove surface. The base-pairing conformation for the methylated G.C base pairs is of the Watson-Crick type as opposed to a wobble-type conformation that had been proposed in a B DNA fragment. As in other Z DNA structures, a spine of hydration is seen in the minor groove.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号