首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 479 毫秒
1.
2.
3.
4.
5.
For 16 commercial cultivars of Lentinula edodes, DNA fragments for the nuclear rDNA intergenic spacers IGS1 and IGS2 were amplified and analyzed. IGS1 contained a subrepeat region, named SR1, and IGS2 contained a pair of direct repeats and a subrepeat region, named SR2. Three and five types of subrepeats were found in SR1 and SR2, respectively. Heterogeneity in the lengths of IGS1 and IGS2 arose mainly from the number of different kinds of subrepeats within SR1 and SR2. The DNA fingerprints from the PCR products targeting SR1 and SR2 were specific for each of the 16 cultivars, and had enough variation for discrimination among the cultivars. This result suggests that the DNA fingerprints targeting SR1 and SR2 are useful for investigations of L. edodes cultivars.  相似文献   

6.
A R Ganley  B Scott 《Genetics》1998,150(4):1625-1637
An extraordinary level of length heterogeneity was found in the ribosomal DNA (rDNA) of an asexual hybrid Neotyphodium grass endophyte, isolate Lp1. This hybrid Neotyphodium endophyte is an interspecific hybrid between two grass endophytes, Neotyphodium lolii, and a sexual form, Epichlöe typhina, and the length heterogeneity was not found in either of these progenitor species. The length heterogeneity in the hybrid is localized to the intergenic spacer (IGS) and is the result of copy-number variation of a tandemly repeated subrepeat class within the IGS, the 111-/119-bp subrepeats. Copy number variation of this subrepeat class appears to be a consequence of mitotic unequal crossing over that occurs between these subrepeats. This implies that unequal crossing over plays a role in the concerted evolution of the whole rDNA. Changes in the pattern of IGS length variants occurred in just two rounds of single-spore purification. Analysis of the IGS length heterogeneity revealed features that are unexpected in a simple model of unequal crossing over. Potential refinements of the molecular details of unequal crossing over are presented, and we also discuss evidence for a combination of homogenization mechanisms that drive the concerted evolution of the Lp1 rDNA.  相似文献   

7.
We have determined the full sequence of the ribosomal DNA intergenic spacer (IGS) of the swimming crab, Charybdis japonica, by long PCR for the first time in crustacean decapods. The IGS is 5376 bp long and contains two nonrepetitive regions separated by one long repetitive region, which is composed mainly of four subrepeats (subrepeats I, II, III, and IV). Subrepeat I contains nine copies of a 60-bp repeat unit, in which two similar repeat types (60 bp-a and 60 bp-b) occur alternatively. Subrepeat II consists of nine successive repeat units with a consensus sequence length of 142 bp. Subrepeat III consists of seven copies of another 60-bp repeat unit (60 bp-c) whose sequence is complementary to that of subrepeat I. Immediately downstream of subrepeat III is subrepeat IV, consisting of three copies of a 391-bp repeat unit. Based on comparative analysis among the subrepeats and repeat units, a possible evolutionary process responsible for the formation of the repetitive region is inferred, which involves the duplication of a 60-bp subrepeat unit (60 bp-c) as a prototype. Received: 13 April 1999 / Accepted: 2 August 1999  相似文献   

8.
Polanco C  González AI  Dover GA 《Genetics》2000,155(3):1221-1229
Detailed analysis of variation in intergenic spacer (IGS) and internal transcribed spacer (ITS) regions of rDNA drawn from natural populations of Drosophila melanogaster has revealed contrasting patterns of homogenization although both spacers are located in the same rDNA unit. On the basis of the role of IGS regions in X-Y chromosome pairing, we proposed a mechanism of single-strand exchanges at the IGS regions, which can explain the different evolutionary trajectories followed by the IGS and the ITS regions. Here, we provide data from the chromosomal distribution of selected IGS length variants, as well as the detailed internal structure of a large number of IGS regions obtained from specific X and Y chromosomes. The variability found in the different internal subrepeat regions of IGS regions isolated from X and Y chromosomes supports the proposed mechanism of genetic exchanges and suggests that only the "240" subrepeats are involved. The presence of a putative site for topoisomerase I at the 5' end of the 18S rRNA gene would allow for the exchange between X and Y chromosomes of some 240 subrepeats, the promoter, and the ETS region, leaving the rest of the rDNA unit to evolve along separate chromosomal lineages. The phenomenon of localized units (modules) of homogenization has implications for multigene family evolution in general.  相似文献   

9.
The primary structure of intergenic non-transcribed and external transcribed spacers of rDNA of diploid wheat Triticum urartu, cloned in pTu3 plasmid 2402 b.p. long was determined. The intergenic non-transcribed rDNA spacer of Tr. urartu was shown to consist of 8 subrepeats with an average of 133 b.p. long, heterogeneous in length and nucleotide sequence. A number of repeated sequences was revealed within each subrepeat. While comparing nucleotide sequences of rDNA subrepeats of Tr. urartu and Tr. aestivum a high homology was found (up to 82%). A high similarity between these plant species was also found in the promoter region and in the external transcribed rDNA spacer. Suppression of the nucleolar organizer of 1A chromosome in the presence of 1B and 6B chromosomes of Tr. aestivum is supposed to be connected with the existence of a great number of subrepeats in the intergenic non-transcribed rDNA spacer of B genome donors in polyploid wheat species of turgidum-aestivum row.  相似文献   

10.
The 6.8-kb rDNA intergenic spacer region of F. excelsior was isolated from a CsCl/actinomycin-D gradient and cloned into pUC18 for further characterization. We observed the presence of subrepeats delimited by HaeIII enzyme sites. These subrepeats were sub-cloned and 11 clones were sequenced. These corresponded to subrepeated elements of either 32 bp or 41 bp that shared a 23-bp common sequence in the 5 end. Within each family of subrepeats, the percentage of common nucleotides was 84.4% for the 5 32-bp subrepeats and 67.4% for the 640-bp subrepeats. Non-repeated HaeIII fragments of 450 bp and 650 bp were also sub-cloned. To compare homology at the IGS region between the rDNA spacers of F. excelsior and the three related species (F. oxyphylla, F. americana, F. ornus), we conducted Southern hybridization analyses using each member of the 32-bp and 40-bp subrepeat families and the unique 450-bp and 650-bp fragments as probes. These analyses indicated that (1) the American ash is more genetically distant from the other three species that the latter are from each other and (2) F. oxyphylla and F. excelsior are more closely related to each other than to F. ornus.  相似文献   

11.
Nucleolar dominance is an epigenetic phenomenon in plant and animal genetic hybrids that describes the expression of 45S ribosomal RNA genes (rRNA genes) inherited from only one progenitor due to the silencing of the other progenitor's rRNA genes. rRNA genes are tandemly arrayed at nucleolus organizer regions (NORs) that span millions of basepairs, thus gene silencing in nucleolar dominance occurs on a scale second only to X-chromosome inactivation in female mammals. In Arabidopsis suecica, the allotetraploid hybrid of A. thaliana and A. arenosa, the A. thaliana -derived rRNA genes are subjected to nucleolar dominance and are silenced via repressive chromatin modifications. However, the developmental stage at which nucleolar dominance is established in A. suecica is currently unknown. We show that nucleolar dominance is not apparent in seedling cotyledons formed during embryogenesis but becomes progressively established during early postembryonic development in tissues derived from both the shoot and root apical meristems. The progressive silencing of A. thaliana rRNA genes correlates with the transition of A. thaliana NORs from a decondensed euchromatic state associated with histone H3 that is trimethylated on lysine 4 (H3K4me3) to a highly condensed heterochromatic state in which the NORs are associated with H3K9me2 and 5-methylcytosine-enriched chromocenters. In RNAi-lines in which the histone deacetylases HDA6 and HDT1 are knocked down, the developmentally regulated condensation and inactivation of A. thaliana NORs is disrupted. Collectively, these data demonstrate that HDA6 and HDT1 function in the postembryonic establishment of nucleolar dominance, a process which recurs in each generation.  相似文献   

12.
The silencing of one parental set of rRNA genes in a genetic hybrid is an epigenetic phenomenon known as nucleolar dominance. We showed previously that silencing is restricted to the nucleolus organizer regions (NORs), the loci where rRNA genes are tandemly arrayed, and does not spread to or from neighboring protein-coding genes. One hypothesis is that nucleolar dominance is the net result of hundreds of silencing events acting one rRNA gene at a time. A prediction of this hypothesis is that rRNA gene silencing should occur independent of chromosomal location. An alternative hypothesis is that the regulatory unit in nucleolar dominance is the NOR, rather than each individual rRNA gene, in which case NOR localization may be essential for rRNA gene silencing. To test these alternative hypotheses, we examined the fates of rRNA transgenes integrated at ectopic locations. The transgenes were accurately transcribed in all independent transgenic Arabidopsis thaliana lines tested, indicating that NOR localization is not required for rRNA gene expression. Upon crossing the transgenic A. thaliana lines as ovule parents with A. lyrata to form F1 hybrids, a new system for the study of nucleolar dominance, the endogenous rRNA genes located within the A. thaliana NORs are silenced. However, rRNA transgenes escaped silencing in multiple independent hybrids. Collectively, our data suggest that rRNA gene activation can occur in a gene-autonomous fashion, independent of chromosomal location, whereas rRNA gene silencing in nucleolar dominance is locus-dependent.  相似文献   

13.
14.
The structure of the maize ribosomal DNA spacer region.   总被引:16,自引:3,他引:13       下载免费PDF全文
  相似文献   

15.
16.
17.
The organization of 18S and 26S rRNA in 14 plant species, belonging to 8 tribes of the cereal family was studied. In rDNA of all the cereals studied, except maize and reed, the similar character of localization of nucleotide sequences, recognized by restrictases BamHI and EcoRI in 18S and 26S rRNA genes was revealed. The structural organization of rDNA of sainfoin (Papilionaceae) was shown to differ from genes, coding for high molecular rRNA in cereals. The primary structure of subrepeat of non-transcribed rDNA spacer of diploid wheat Tr. urartu, consisting of 132 base pairs was determined. The given subrepeat was hybridized with BamHI-fragments of DNA from cereals and sainfoin. It is shown to hybridize with rDNA of all the cereals studied, and it hardly hybridizes with rDNA of maize and sorghum, but doesn't hybridize with rDNA of sainfoin. The conclusion is made that the size polymorphism of restriction fragments in the coding rDNA region and the level of similarity of subrepeats of rDNA of the non-transcribed spacer may help to reveal the phylogenetic affinity of plants, belonging to different tribes within one family.  相似文献   

18.
19.
Uniparental silencing of 35S rRNA genes (rDNA), known as nucleolar dominance (ND), is common in interspecific hybrids. Allotetraploid Tragopogon mirus composed of Tragopogon dubius (d) and Tragopogon porrifolius (p) genomes shows highly variable ND. To examine the molecular basis of such variation, we studied the genetic and epigenetic features of rDNA homeologs in several lines derived from recently and independently formed natural populations. Inbred lines derived from T. mirus with a dominant d‐rDNA homeolog transmitted this expression pattern over generations, which may explain why it is prevalent among natural populations. In contrast, lines derived from the p‐rDNA dominant progenitor were meiotically unstable, frequently switching to co‐dominance. Interpopulation crosses between progenitors displaying reciprocal ND resulted in d‐rDNA dominance, indicating immediate suppression of p‐homeologs in F1 hybrids. Original p‐rDNA dominance was not restored in later generations, even in those segregants that inherited the corresponding parental rDNA genotype, thus indicating the generation of additional p‐rDNA and d‐rDNA epigenetic variants. Despite preserved intergenic spacer (IGS) structure, they showed altered cytosine methylation and chromatin condensation patterns, and a correlation between expression, hypomethylation of RNA Pol I promoters and chromatin decondensation was apparent. Reversion of such epigenetic variants occurred rarely, resulting in co‐dominance maintained in individuals with distinct genotypes. Generally, interpopulation crosses may generate epialleles that are not present in natural populations, underlying epigenetic dynamics in young allopolyploids. We hypothesize that highly expressed variants with distinct IGS features may induce heritable epigenetic reprogramming of the partner rDNA arrays, harmonizing the expression of thousands of genes in allopolyploids.  相似文献   

20.
Jo SH  Park HM  Kim SM  Kim HH  Hur CG  Choi D 《Heredity》2011,106(5):876-885
Tandemly repeated DNAs, referred to as satellite DNAs, often occur in a genome in a genus-specific manner. However, the mechanisms for generation and evolution for these sequences are largely unknown because of the uncertain origins of the satellite DNAs. We found highly divergent genus-specific satellite DNAs that showed sequence similarity with genus-specific intergenic spacers (IGSs) in the family Solanaceae, which includes the genera Nicotiana, Solanum and Capsicum. The conserved position of the IGS between 25S and 18S rDNA facilitates comparison of IGS sequences across genera, even in the presence of very low sequence similarity. Sequence comparison of IGS may elucidate the procedure of the genesis of complex monomer units of the satellite DNAs. Within the IGS of Capsicum species, base substitutions and copy number variation of subrepeat monomers were causes of monomer divergence in IGS sequences. At the level of inter-generic IGS sequences of the family Solanaceae, however, genus-specific motif selection, motif shuffling between subrepeats and differential amplification among motifs were involved in formation of genus-specific IGS. Therefore, the genus-specific satellite DNAs in Solanaceae plants can be generated from differentially organized repeat monomers of the IGS rather than by accumulation of mutations from pre-existent satellite DNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号