首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Depressions in the red to far-red ratio (R:FR) of solar radiation arising from the selective absorption of R (600–700 nm) and scattering of FR (700–800 nm) by chlorophyll within plant canopies may function as an environmental signal directly regulating axillary bud growth and subsequent ramet recruitment in clonal plants. We tested this hypothesis in the field within a single cohort of parental ramets in established clones of the perennial bunchgrass, Schizachyrium scoparium. The R:FR was modified near leaf sheaths and axillary buds at the bases of individual ramets throughout the photoperiod without increasing photosynthetic photon flux density (PPFD) by either (1) supplementing R beneath canopies to raise the naturally low R:FR or (2) supplementing FR beneath partially defoliated canopies to suppress the natural R:FR increase following defoliation. Treatment responses were assessed by simultaneously monitoring ramet recruitment, PPFD and the R:FR beneath individual clone canopies at biweekly intervals over a 12-week period. Neither supplemental R nor FR influenced the rate or magnitude of ramet recruitment despite the occurrence of ramet recruitment in all experimental clones. In contrast, defoliation with or without supplemental FR beneath clone canopies reduced ramet recruitment 88% by the end of the experiment. The hypothesis stating that the R:FR signal directly regulates ramet recruitment is further weakened by evidence demonstrating that (1) the low R:FR-induced suppression of ramet recruitment is only one component of several architectural modifications exhibited by ramets in response to the R:FR signal (2) immature leaf blades, rather than leaf sheaths or buds, function as sites of R:FR perception on individual ramets, and (3) increases in the R:FR at clone bases following partial canopy removal are relatively transient and do not override the associated constraints on ramet recruitment resulting from defoliation. A depressed R:FR is probably of greater ecological significance as a signal of competition for light in vegetation canopies than as a density-dependent signal which directly regulates bud growth and ramet recruitment.  相似文献   

2.
The phytochrome family of signal-transducing photoreceptors provides plants with the capacity to perceive variations in the relative fluxes of red (R) and far-red (FR) radiation. This capacity has been proposed to be of ecological value in the perception of the proximity of neighbouring plants and the consequent induction of shade avoidance responses. The work reported here has evaluated this potential by determining quantitatively the effect of neighbour proximity on the growth of canopies of Populus trichocarpa×deltoides‘Beaupré’ trees, and relating the measured variables to the long-term vectoral radiation quality inside each canopy. The spectral distribution of radiation inside four canopies of Populus trichocarpa×deltoides‘Beaupre’ of different densities was monitored throughout the growing season. Spectral distributions inside the canopies were measured in 10° wedges at different heights and angles. The results are presented as PFD over 400–700 nm (PFD400–700) and PFD over 400–800 nm (PFD400–700). Results are also presented for the calculated phytochrome photoequilibrium (Pfr/P) and red:far-red ratio (R:FR). Data are presented as in-canopy angular and height profiles, and as diurnal and seasonal variations. PFD400–700 and Pfr/P were found to be reduced inside each canopy, the reduction being greatest in the most dense canopy, and least in the most open canopy. At any height within each canopy, calculated Pfr/P decreased linearly with time throughout the growing season, until leaf senescence began. The reduction was greater in the denser canopies and was found to be similar for three consecutive field seasons. Linear relationships were found between plant stem growth rate, plant spacing and Pfr/P calculated from radiation propagated approximately horizontally within the canopies. The findings support the role of phytochrome in proximity perception in the natural environment and provide a quantitative basis for investigating the competitive interactions between plants growing in dense stands. The hypothesis is proposed that the dynamics of developing or regenerating canopies can be accounted for on the basis of phytochrome-mediated perception of the proximity of neighbouring plants.  相似文献   

3.
4.
Plants growing at high densities express shade avoidance traits as a response to the presence of neighbours. Enhanced shoot elongation is one of the best researched shade avoidance components and increases light capture in dense stands. We show here that also leaf movements, leading to a more vertical leaf orientation (hyponasty), may be crucial in the early phase of competition. The initiation of shade avoidance responses is classically attributed to the action of phytochrome photoreceptors that sense red:far-red (R:FR) ratios in light reflected by neighbours, but also other signals may be involved. It was recently shown that ethylene-insensitive, transgenic (Tetr) tobacco plants, which are insensitive to the gaseous plant hormone ethylene, have reduced shade avoidance responses to neighbours. Here, we report that this is not related to a reduced response to low R:FR ratio, but that Tetr tobacco plants are unresponsive to a reduced photon fluence rate of blue light, which normally suppresses growth inhibition in wild-type (WT) plants. In addition to these light signals, ethylene levels in the canopy atmosphere increased to concentrations that could induce shade avoidance responses in WT plants. Together, these data show that neighbour detection signals other than the R:FR ratio are more important than previously anticipated and argue for a particularly important role for ethylene in determining plant responses to neighbours.  相似文献   

5.
Sessile plants must continuously adjust their growth and development to optimize photosynthetic activity under ever-fluctuating light conditions. Among such light responses in plants, one of the best-characterized events is the so-called shade avoidance, for which a low ratio of the red (R):far-red (FR) light intensities is the most prominent stimulus. Such shade avoidance responses enable plants to overtop their neighbors, thereby enhancing fitness and competitiveness in their natural habitat. Considerable progress has been achieved during the last decade in understanding the molecular mechanisms underlying the shade avoidance responses in the model rosette plant, Arabidopsis thaliana. We characterize here the fundamental aspects of the shade avoidance responses in the model legume, Lotus japonicus, based on the fact that its phyllotaxis (or morphological architecture) is quite different from that of A. thaliana. It was found that L. japonicus displays the characteristic shade avoidance syndrome (SAS) under defined laboratory conditions (a low R:FR ratio, low light intensity, and low blue light intensity) that mimic the natural canopy. In particular, the outgrowth of axillary buds (i.e., both aerial and cotyledonary shoot branching) was severely inhibited in L. japonicus grown in the shade. These results are discussed with special emphasis on the unique aspects of SAS observed with this legume.  相似文献   

6.
Plants detect the presence of neighbouring vegetation by monitoring changes in the ratio of red (R) to far‐red (FR) wavelengths (R:FR) in ambient light. Reductions in R:FR are perceived by the phytochrome family of plant photoreceptors and initiate a suite of developmental responses termed the shade avoidance syndrome. These include increased elongation growth of stems and petioles, enabling plants to overtop competing vegetation. The majority of shade avoidance experiments are performed at standard laboratory growing temperatures (>20°C). In these conditions, elongation responses to low R:FR are often accompanied by reductions in leaf development and accumulation of plant biomass. Here we investigated shade avoidance responses at a cooler temperature (16°C). In these conditions, Arabidopsis thaliana displays considerable low R:FR‐mediated increases in leaf area, with reduced low R:FR‐mediated petiole elongation and leaf hyponasty responses. In Landsberg erecta, these strikingly different shade avoidance phenotypes are accompanied by increased leaf thickness, increased biomass and an altered metabolite profile. At 16°C, low R:FR treatment results in the accumulation of soluble sugars and metabolites associated with cold acclimation. Analyses of natural genetic variation in shade avoidance responses at 16°C have revealed a regulatory role for the receptor‐like kinase ERECTA.  相似文献   

7.
Light limitation caused by dense vegetation is one of the greatest threats to plant survival in natural environments. Plants detect such neighboring vegetation as a reduction in the red to far-red ratio (R:FR) of the incoming light. The low R:FR signal, perceived by phytochromes, initiates a set of responses collectively known as the shade avoidance syndrome, intended to reduce the degree of current or future shade from neighbors by overtopping such competitors or inducing flowering to ensure seed production. At the seedling stage these responses include increased hypocotyl elongation. We have systematically analyzed the Arabidopsis seedling response and the contribution of phyA and phyB to perception of decreased R:FR, at three different levels of photosynthetically active radiation. Our results show that the shade avoidance syndrome, induced by phyB deactivation, is gradually antagonized by phyA, operating through the so-called FR-High Irradiance Response, in response to high FR levels in a range that simulates plant canopy shade. The data indicate that the R:FR signal distinguishes between the presence of proximal, but non-shading, neighbors and direct foliar shade, via a intrafamily photosensory attenuation mechanism that acts to suppress excessive reversion toward skotomorphogenic development under prolonged direct vegetation shade.  相似文献   

8.
Molecular analysis of natural leaf senescence in Arabidopsis thaliana   总被引:27,自引:0,他引:27  
Using artificial canopies, several authors have shown that horizontally propagated and overall propagated radiation beneath the canopy differ substantially in spectral distribution in the red (R) and far red (FR) wavelengths. Given the lack of information about light quality under real crop canopies, the R:FR ratio of vertical and horizontal radiation beneath field-grown maize, soybean and wheat was monitored until leaf area index (LAI) reached 4, 2.5 and 6.9, respectively.
A Li-Cor 1800 spectroradiometer with a remote cosine receptor fitted with a quartz fibre-optic light-guide was used. To isolate radiation coming from a given direction, a black coated tube was fitted to the cosine receptor. The viewing angle was 15°. In open conditions, the values of R:FR from the upper hemisphere were between 1.07 and 1.20. For vertically and horizontally-propagated light, average values were 1.22 and 0.75 respectively.
Beneath the canopy, both R:FR and photosynthetic photon flux density (PPFD) from the entire upper hemisphere decreased in relation to LAI and crop height. R:FR of the horizontal component were found to be generally much lower than the vertical, which decreased significantly only in the later measurements.
The lowest R:FR values were recorded under wheat and soybean canopies. Even the very low LAIs present at early development stages were enough to cause a sharp decrease of R:FR in the horizontal fluxes. Referring to the entire upper hemisphere, PPFD transmittance and R:FR as a percentage of the external references appeared well correlated.  相似文献   

9.
Shade avoidance in plants involves rapid shoot elongation to grow toward the light. Cell wall-modifying mechanisms are vital regulatory points for control of these elongation responses. Two protein families involved in cell wall modification are expansins and xyloglucan endotransglucosylase/hydrolases. We used an alpine and a prairie ecotype of Stellaria longipes differing in their response to shade to study the regulation of cell wall extensibility in response to low red to far-red ratio (R/FR), an early neighbor detection signal, and dense canopy shade (green shade: low R/FR, blue, and total light intensity). Alpine plants were nonresponsive to low R/FR, while prairie plants elongated rapidly. These responses reflect adaptation to the dense vegetation of the prairie habitat, unlike the alpine plants, which almost never encounter shade. Under green shade, both ecotypes rapidly elongate, showing that alpine plants can react only to a deep shade treatment. Xyloglucan endotransglucosylase/hydrolase activity was strongly regulated by green shade and low blue light conditions but not by low R/FR. Expansin activity, expressed as acid-induced extension, correlated with growth responses to all light changes. Expansin genes cloned from the internodes of the two ecotypes showed differential regulation in response to the light manipulations. This regulation was ecotype and light signal specific and correlated with the growth responses. Our results imply that elongation responses to shade require the regulation of cell wall extensibility via the control of expansin gene expression. Ecotypic differences demonstrate how responses to environmental stimuli are differently regulated to survive a particular habitat.  相似文献   

10.
The roles of phytochrome A (phyA), phytochrome B (phyB) and a putative blue-light (BL) photoreceptor (HY4) in the control of hypocotyl growth by natural radiation were investigated using phyA, phyB and hy4 mutants of Arabidopsis thaliana. Full sunlight inhibited hypocotyl growth to a larger extent in wild-type (WT) than in phyA, phyB and, particularly, hy4 seedlings. In WT seedlings, hypocotyl growth was promoted by selectively lowering BL irradiance, lowering red-light (R) plus far-red-light (FR) irradiance or lowering the R/FR ratio (which was achieved either by increasing FR or by reducing R). The effects of lowering BL were reduced in hy4 and exaggerated in phyA seedlings. The effects of lowering R+FR were reduced in phyA and exaggerated in hy4 seedlings. Neither phyB nor hy4 mutants responded to low R/FR ratios. Neighbouring plants reflecting FR without shading caused subtle reductions of the R/FR ratio. This signal promoted hypocotyl growth in WT but not in phyA, phyB or hy4 seedlings. Intermediate canopy shade produced similar effects in all genotypes. Under deep shade, de-etiolation was severely impaired in phyA seedlings, which died prematurely. Thus, the FR ‘high-irradiance reaction’ mediated by phyA could be important for seedling survival under dense canopies.  相似文献   

11.
Shade avoidance is a syndrome of plastic responses to light signals encountered in crowded plant communities and is a crucial component of competitive strategy in higher plants. The responses are mediated via signal perception by specific members of the phytochrome family of photoreceptors, which detect the relative proportions of red (R) and far‐red (FR) radiation within dense communities. We analysed two aspects of shade avoidance, the acceleration of flowering and the enhancement of elongation growth, displayed by more than 100 accessions of Arabidopsis thaliana (Heyn.) in response to FR‐proximity signals. Both traits showed wide variation between accessions, which was unrelated to the latitude of the location of original collection. Flowering acceleration is a major feature of shade avoidance in rosette plants such as Arabidopsis, and most accessions showed dramatic responses, but several were identified as being recalcitrant to the proximity signal. These accessions are likely to be informative in the analysis of quantitative variation in shade avoidance. Hypocotyl elongation, treated here as an indicator of elongation growth responses, also varied widely amongst accessions. The variations in flowering acceleration and elongation were not correlated, indicating that microevolution in the downstream pathways from signal perception has occurred separately.  相似文献   

12.
Summary Seedlings of shade-intolerant species react to alterations of the light climate caused by their neighbors with morphological changes that may influence the pattern of resource acquisition and utilization at the whole-canopy level. One such change, the increased stem elongation rate that is triggered by low red (R, 660 nm) to far-red (FR, 730 nm) ratios (R:FR) in dense canopies, might reduce the amount of assimilates available for leaf area expansion or root growth, and in that way affect resource capture by the canopy. We have tested this hypothesis by comparing the growth of both isolated individuals and canopies of the weed Amaranthus quitensis under conditions differing only in the spectral distribution of the incident light. When canopies received the full spectrum of sunlight, the stems were a large proportion (40–57%) of total biomass. Filtering the FR waveband (and hence raising the R:FR ratio to eliminate the neighbors' proximity-signal) resulted in shorter canopies with lighter stems. However, the growth of leaves and roots was not promoted by this treatment, indicating that the opportunity cost of the assimilates invested in the stems was nil or very small. Filtering the FR had no effect on biomass accumulation when plants were grown as isolated individuals. The higher growth of the canopics under full spectrum could be due to a higher light interception or to a higher efficiency of light conversion into biomass. The first possibility is weakened by the observation that filtering the FR had no effect on the dynamics of soil covering by the crops. The second is indirectly strengthened by results of an experiment with isolated plants showing that stem elongation, stem growth, and total plant biomass can be increased by reducing the flux of R light received by the stems without affecting the light climate of the leaves. Further work is needed to distinguish between these two possibilities; whatever the cause, our results show that the elongation responses to decreased R:FR may lead to a net increase in canopy productivity, and do not necessarily have a negative impact on the growth of resource-harvesting organs.  相似文献   

13.
Light with decreased red:far-red (R:FR) ratios may signal neighbor presence and trigger plant developmental responses. There is some evidence that plant canopies forage towards increased R:FR ratios, but it is unclear to what extent R:FR versus the total amount of photosynthetically active radiation (PAR) influences canopy foraging responses among forest trees. The objective of this study was to examine the relative importance of PAR and R:FR as photosensory cues leading to tree canopy foraging responses. Seedlings of Betula papyrifera Marshall (paper birch) were grown in an experimental garden. Each seedling was germinated and grown in its own shading structure and exposed to two spatially separated light environments, in a factorial design of PAR and R:FR. Plant canopy foraging was evaluated at the end of one growing season in terms of canopy displacement, canopy area, leaf number, direction of stem lean, petiole aspect, and lamina aspect with respect to experimental light treatments. Leaf number and canopy area were greater on the high PAR sides of plants, irrespective of the R:FR treatment. Seedling canopies were displaced towards the direction of high PAR, but this relationship was not significant across all treatments. Petiole aspect was random and showed no significant directedness towards any of the light treatments. Lamina aspect and the direction of stem lean were distributed towards the direction of high PAR, irrespective of the R:FR treatment. Overall, first-year B. papyrifera seedlings used PAR, rather than R:FR ratio, as a photosensory cue for canopy light foraging.  相似文献   

14.
Many plants display a characteristic suite of developmental"shade avoidance" responses, such as stem elongation and acceleratedreproduction, to the low ratio of red to far-red wavelengths(R:FR) reflected or transmitted from green vegetation. ThisR:FR cue of crowding and vegetation shade is perceived by thephytochrome family of photoreceptors. Phytochrome-mediated responsesprovide an ideal system for investigating the adaptive evolutionof phenotypic plasticity in natural environments. The molecularand developmental mechanisms underlying shade avoidance responsesare well studied, and testable ecological hypotheses exist fortheir adaptive significance. Experimental manipulation of phenotypesdemonstrates that shade avoidance responses may be adaptive,resulting in phenotypes with high relative fitness in the environmentsthat induce those phenotypes. The adaptive value of shade avoidancedepends upon the competitive environment, resource availability,and the reliability of the R:FR cue for predicting the selectiveenvironment experienced by an induced phenotype. Comparativestudies and a reciprocal transplant experiment with Impatienscapensis provide evidence of adaptive divergence in shade avoidanceresponses between woodland and clearing habitats, which mayresult from population differences in the frequency of selectionon shade avoidance traits, as well as differences in the reliabilityof the R:FR cue. Recent rapid progress in elucidating phytochromesignaling pathways in the genetic model Arabidopsis thalianaand other species now provides the opportunity for studyinghow selection on shade avoidance traits in natural environmentsacts upon the molecular mechanisms underlying natural phenotypicvariation.  相似文献   

15.
Photomorphogenic shade avoidance responses provide an ideal model system for integrating genetic, physiological and population biology approaches to the study of adaptive plasticity. The adaptive plasticity hypothesis predicts that shade avoidance phenotypes induced by low ratios of red to far-red light (R:FR) will have high relative fitness in dense stands, but will suffer a fitness disadvantage at low density. Experiments with transgenic and mutant plants in which photomorphogenic genes are disabled, as well as phenotype manipulation by means of altered R:FR, strongly support the shade avoidance hypothesis. The observation of photomorphogenic ecotypes in different selective environments also suggests that the shade avoidance response has undergone adaptive evolution. Quantitative genetic variation in R:FR sensitivity has been detected in wild populations, indicating that the evolutionary potential exists for response to natural selection. However, evolutionary response may be constrained by genetic correlations among developmentally linked traits. Therefore it cannot be assumed that an observed suite of photomorphogenic responses represents an adaptive optimum for every trait.  相似文献   

16.
Sessile plants must continuously adjust their growth and development to optimize photosynthetic activity under ever-fluctuating light conditions. Among such light responses in plants, one of the best-characterized events is the so-called shade avoidance, for which a low ratio of the red (R):far-red (FR) light intensities is the most prominent stimulus. Such shade avoidance responses enable plants to overtop their neighbors, thereby enhancing fitness and competitiveness in their natural habitat. Considerable progress has been achieved during the last decade in understanding the molecular mechanisms underlying the shade avoidance responses in the model rosette plant, Arabidopsis thaliana. We characterize here the fundamental aspects of the shade avoidance responses in the model legume, Lotus japonicus, based on the fact that its phyllotaxis (or morphological architecture) is quite different from that of A. thaliana. It was found that L. japonicus displays the characteristic shade avoidance syndrome (SAS) under defined laboratory conditions (a low R:FR ratio, low light intensity, and low blue light intensity) that mimic the natural canopy. In particular, the outgrowth of axillary buds (i.e., both aerial and cotyledonary shoot branching) was severely inhibited in L. japonicus grown in the shade. These results are discussed with special emphasis on the unique aspects of SAS observed with this legume.  相似文献   

17.
Abstract. Spectral photon distributions, red:far-red ratios (i.e. R:FR) and phytochrome photoequilibria (i.e. Pfr/Ptotal) were measured at various distances from artificial canopies composed of mustard or tobacco plants. Measurements were compared for radiation propagated predominantly vertically downwards and radiation propagated predominantly horizontally. Reflection signals from the artificial canopies were computed and shown to consist of a depletion of radiation over the 400–690 nm wavelength range, and an enhancement of radiation over the 690–800 nm range. R:FR and Pfr/Ptotal increased gradually with distance from the canopies, with significant depressions of both parameters evident at least as far as 30 cm from the vegetation stands. It is concluded that, in principle at least, detection of spectral quality differences by phytochrome would allow not only the presence but also the proximity of neighbouring plants to be perceived. Proximity perception is proposed as an ecologically valuable mechanism through which plants may be able to gauge their anticipatory responses to incipient shading according to the challenge posed by the nearness of neighbouring plants.  相似文献   

18.
Plants respond to proximate neighbors with a suite of responses that comprise the shade avoidance syndrome. These phytochrome-mediated responses include hyponasty (i.e. a more vertical orientation of leaves) and enhanced stem and petiole elongation. We showed recently that ethylene-insensitive tobacco (Nicotiana tabacum) plants (Tetr) have reduced responses to neighbors, showing an important role for this gaseous plant hormone in shade avoidance. Here, we investigate interactions between phytochrome signaling and ethylene action in shade avoidance responses. Furthermore, we investigate if ethylene acts in these responses through an interaction with the GA class of hormones. Low red to far-red light ratios (R:FR) enhanced ethylene production in wild-type tobacco, resulting in shade avoidance responses, whereas ethylene-insensitive plants showed reduced shade avoidance responses. Plants with inhibited GA production showed hardly any shade avoidance responses at all to either a low R:FR or increased ethylene concentrations. Furthermore, low R:FR enhanced the responsiveness of hyponasty and stem elongation in both wild-type and Tetr plants to applied GA(3), with the stem elongation process being more responsive to GA(3) in the wild type than in Tetr. We conclude that phytochrome-mediated shade avoidance responses involve ethylene action, at least partly by modulating GA action.  相似文献   

19.
Internode extension-growth responses to neighbouring plants and to red to far-red ratios (R:FR) were investigated in wild-type (WT) and aurea (au)-mutant seedlings of tomato grown under natural radiation. The genomic location of the au mutant is not known, but one of its consequences is the reduced phytochrome level. In WT seedlings, internode growth was promoted by the presence of non-shading neighbours reflecting far-red light (FR), the shade of a tall canopy, FR provided as a supplement during the photoperiod, and FR pulses either provided at the end of the day or delayed into the dark period. Supplementary FR during the photoperiod also promoted growth in herbicide-treated partially bleached WT seedlings. The au mutant showed higher background extension-growth rates, but only responded to the most severe treatments: deep shade light and very low R:FR at the end of the day, i.e. au-mutant seedlings were less sensitive than WT seedlings to R:FR signals. Wild-type seedlings were transferred from the glasshouse to a growth room and exposed to white light with two levels of phytochrome-absorbable radiation but similar phytochrome photoequilibria and radiation for photosynthesis. The plants exposed to the lowest level showed a transient increase of internode extension growth rate and a simultaneous reduction of response to FR pulses, i.e. reproduced some of the features of au-mutant seedlings. Phytochrome itself could set the degree of response to Pfr during neighbour detection.  相似文献   

20.
This study examined four species of Syzygium (S. firmum, S. makul, S. operculatum, S. rubicundum) Myrtaceae, a tree genus that dominates the canopy of rain forests of south‐west Sri Lanka. Syzygium spp. occupy differing habitats with relation to succession and forest topography. We examined differences in leaf morphology and physiology in response to amount of shade, an important environmental variable affecting Syzygium distribution within the forest. To study change in leaf structure and physiology, environmental shelters were constructed simulating forest shade that differed in quality, quantity and duration. Seedlings were exposed to: (i) 0% shade (full sun, FS), red : far red (R : FR) ratio 1.27; (ii) 65% shade (large opening, LO) with direct sunlight similar to the centre of a large canopy opening, R : FR ratio 1.27; (iii) 82% shade (small opening, SO) with direct sunlight similar to the centre of a small canopy opening, R : FR ratio 1.27; (iv) 58% uniform light shade (LS) with a quality similar to the outside edge of a large canopy opening, R : FR ratio 1.05; (v) 85% uniform medium shade (MS) with a quality similar to the inside forest edge of a large canopy opening, R : FR ratio 0.97; (vi) 99% uniform deep shade (DS) similar to that of the forest understorey, R : FR ratio 0.23. The shelters were constructed in a large open area at the field station of the Sinharaja World Heritage site, Sri Lanka. Seedlings of each species were grown for two years in their respective shade treatments before physiological, morphological and anatomical measurements were made on leaves. Variation in leaf structure and physiology between the species was associated with differences in shade‐tolerance and water‐use. All species increased in photosynthesis rates and dimensions in leaf structure (leaf blade and cuticle thickness, stomatal density, thickness of upper and lower epidermis, and thickness of palisade mesophyll) with decrease in shade. In contrast, stomatal conductivity was highest in the DS (99% shade) treatment. Leaves of Syzygium firmum were thickest and largest in area. S. firmum also had highest photosynthesis in the SO (82% shade) treatment. S. firmum was the most shade‐tolerant of all species: it grows well in low shade and its leaf structure suggests it to be the most conservative in water‐use of the Syzygium spp. In the forest S. firmum can persist in the forest shade as established seedlings, but grows best within canopy openings of late‐seral rain forest. Leaves of S. operculatum were thinnest but had highest stomatal densities of the four species. S. operculatum is considered shade‐intolerant, with a leaf structure suggesting it to be prone to desiccation, and by implication susceptible to drought. S. operculatum is found along streams within early seral rain forest habitat, often originating on stream banks after land clearance for cultivation. In the FS (0% shade) treatment, S. rubicundun had highest photosynthesis rates and greatest number of leaves but smallest leaf area of the Syzygium species. S. rubicundum is more shade‐intolerant but more efficient in water‐use than S. operculatum. S. rubicundum is a mid‐seral canopy tree of the midslope stands that are thought to have originated after catastrophic windthrows or swidden cultivation. The leaf physiology and structure of S. makul suggests it to be both moderately shade‐tolerant and conservative in water‐use. It is the most widely distributed Syzygium species across the topography of late‐seral rain forest. We suggest forest disturbance and hydrology are important environmental factors that influence distribution of Syzygium species across the topography. Results from this study contribute to a body of knowledge suggesting that canopy tree species of rain forests in south‐west Sri Lanka have discrete affinities to topography and differences in successional status, and that adaptations in leaf structure and physiology are indicative of such phenomena. © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141 , 365–377.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号