共查询到20条相似文献,搜索用时 0 毫秒
1.
Tsuyoshi Nishioku Koichi Hashimoto Keizo Yamashita Shyh-Yuh Liou Yoshifumi Kagamiishi Hitoshi Maegawa Nobuo Katsube Christoph Peters Kurt von Figura Paul Saftig Nobuhiko Katunuma Kenji Yamamoto Hiroshi Nakanishi 《The Journal of biological chemistry》2002,277(7):4816-4822
We have attempted to elucidate an involvement of cathepsin E (CE) in major histocompatibility complex class II-mediated antigen presentation by microglia. In primary cultured murine microglia, CE was localized mainly in early endosomes and its expression level was markedly increased upon stimulation with interferon-gamma. Pepstatin A, a specific inhibitor of aspartic proteases, significantly inhibited interleukin-2 production from an OVA-(266-281)-specific T helper cell hybridomas upon stimulation with native OVA presented by interferon-gamma-treated microglia. However, pepstatin A failed to inhibit the presentation of OVA-(266-281) peptide. The possible involvement of CE in the processing of native OVA into antigenic peptide was further substantiated by that digested fragments of native OVA by CE could be recognized by OVA-specific Th cells. Cathepsin D also degraded native OVA into antigenic peptide, whereas microglia prepared from cathepsin D-deficient mice retained an ability for antigen presentation. On the other hand, the requirement for cysteine proteases such as cathepsins S and B in the processing of invariant chain (Ii) was confirmed by immunoblot analyses in the presence of their specific inhibitors. In conclusion, CE is required for the generation of an antigenic epitope from OVA but not for the processing of Ii in microglia. 相似文献
2.
Mitotic recombination is responsible for the loss of heterozygosity in cultured murine cell lines. 总被引:5,自引:2,他引:5
下载免费PDF全文

Heterozygous mammalian cell lines normally express both parental alleles at most autosomal loci. However, mutants can be isolated that fail to express one of the alleles. Using a murine pre-B cell line that is heterozygous for several loci on chromosome 12, including one encoding the cell surface antigen Ly-18, we found that one of the two Ly-18 antigenic forms was lost at a rate of 1.5 x 10(-5) per cell per generation. Molecular analysis revealed that a genetic marker distal to Ly-18 became homozygous. Analysis of the genotype of the mutants at the rDNA cluster, located close to the centromere, strongly suggests that the mutants arose by mitotic recombination within this multicopy locus. 相似文献
3.
ATP hydrolysis is required for cohesin's association with chromosomes 总被引:12,自引:0,他引:12
Arumugam P Gruber S Tanaka K Haering CH Mechtler K Nasmyth K 《Current biology : CB》2003,13(22):1941-1953
BACKGROUND: A multi-subunit protein complex called cohesin is involved in holding sister chromatids together after DNA replication. Cohesin contains four core subunits: Smc1, Smc3, Scc1, and Scc3. Biochemical studies suggest that Smc1 and Smc3 each form 50 nm-long antiparallel coiled coils (arms) and bind to each other to form V-shaped heterodimers with globular ABC-like ATPases (created by the juxtaposition of N- and C-terminal domains) at their apices. These Smc "heads" are connected by Scc1, creating a tripartite proteinaceous ring. RESULTS: To investigate the role of Smc1 and Smc3's ATPase domains, we engineered smc1 and smc3 mutations predicted to abolish either ATP binding or hydrolysis. All mutations abolished Smc protein function. The binding of ATP to Smc1, but not Smc3, was essential for Scc1's association with Smc1/3 heterodimers. In contrast, mutations predicted to prevent hydrolysis of ATP bound to either head abolished cohesin's association with chromatin but not Scc1's ability to connect Smc1's head with that of Smc3. Inactivation of the Scc2/4 complex had a similar if not identical effect; namely, the production of tripartite cohesin rings that cannot associate with chromosomes. CONCLUSIONS: Cohesin complexes whose heads have been connected by Scc1 must hydrolyze ATP in order to associate stably with chromosomes. If chromosomal association is mediated by the topological entrapment of DNA inside cohesin's ring, then ATP hydrolysis may be responsible for creating a gate through which DNA can enter. We suggest that ATP hydrolysis drives the temporary disconnection of Scc1 from Smc heads that are needed for DNA entrapment and that this process is promoted by Scc2/4. 相似文献
4.
Podocyte and its slit diaphragm play an important role in maintaining normal glomerular filtration barrier function and structure.
Podocyte apoptosis and slit diaphragm injury leads to proteinuria and glomerulosclerosis. However, the molecular mechanism
of podocyte injury remains poorly understood. The family of mitogen-activated protein kinases including extracellular signal-regulated
kinase (ERK), c-Jun N-terminal kinase, and p38 signal pathways, are implicated in the progression of various glomerulopathies.
However, the role of the activated signal pathway(s) in podocyte injury is elusive. This study examined phosphorylation of
ERK in rat puromycin aminonucleoside (PAN) nephropathy as well as conditionally immortalized mouse podocyte treated with PAN
in vitro. The effect of treatment with U0126, an inhibitor of ERK, was also investigated. In PAN nephropathy, the phosphorylation
of ERK was marked. In podocyte injury, the marked and sustained activation of ERK pathway was also observed before the appearance
of significant podocyte apoptosis. Pretreatment with U0126 to podocyte completely inhibited ERK activation, with complete
suppression podocyte apoptosis and ameliorated nephrin protein expression along with the phosphorylation of nephrin in podocyte
injury. In cultured podocyte, PAN induced actin recorganition, and U0126 inhibited such change. However, U0126 did not recovery
the phosphorylation change of neph1 in podocyte injury. We concluded that the sustained activation of ERK along with the phosphorylation
of neph1 might be necessary for podocyte injury. The study here suggested that ERK might become a potential target for therapeutic
intervention to prevent podocytes from injury which will result in proteinuria. 相似文献
5.
Buffon A Wink MR Ribeiro BV Casali EA Libermann TA Zerbini LF Robson SC Sarkis JJ 《Biochimica et biophysica acta》2007,1770(8):1259-1265
In this study, we evaluated the NTPDases and ecto-5'-nucleotidase (CD73) expression profiles and the pattern of adenine nucleotide hydrolysis in rats submitted to the Walker 256 tumor model, 6, 10 and 15 days after the subcutaneous inoculation. Using RT-PCR analysis, we identified mRNA for all of the members of the ecto-nucleoside triphosphate diphosphohydrolase family investigated and a 5'-nucleotidase. By quantitative real-time PCR, Entpd1 (Cd39) and Entpd2 (Cd39L1) and CD73 were identified as the dominant genes expressed by the Walker 256 tumor, at all times studied. Extracellular adenine nucleotide hydrolysis by the Walker 256 tumor was estimated by HPLC analysis. Rapid hydrolysis of extracellular ATP by the tumor cells was observed, leading to the formation of adenosine and inosine in cells obtained from solid tumors at 6 and 10 days after inoculation. Cells obtained from solid tumors at 15 days of growth presented high levels of AMP and presented adenosine as a final product after 90 min of incubation. Results demonstrate that the presence of NTPDases and 5'-nucleotidase enzymes in Walker 256 tumor cells may be important for regulation of the extracellular adenine nucleotides/adenine nucleoside ratio, therefore leading to tumor growth. 相似文献
6.
Multimeric BLM is dissociated upon ATP hydrolysis and functions as monomers in resolving DNA structures 总被引:1,自引:0,他引:1
Ya-Nan Xu Nicolas Bazeille Xiu-Yan Ding Xi-Ming Lu Peng-Ye Wang Elisabeth Bugnard Virginie Grondin Shuo-Xing Dou Xu Guang Xi 《Nucleic acids research》2012,40(19):9802-9814
Bloom (BLM) syndrome is an autosomal recessive disorder characterized by an increased risk for many types of cancers. Previous studies have shown that BLM protein forms a hexameric ring structure, but its oligomeric form in DNA unwinding is still not well clarified. In this work, we have used dynamic light scattering and various stopped-flow assays to study the active form and kinetic mechanism of BLM in DNA unwinding. It was found that BLM multimers were dissociated upon ATP hydrolysis. Steady-state and single-turnover kinetic studies revealed that BLM helicase always unwound duplex DNA in the monomeric form under conditions of varying enzyme and ATP concentrations as well as 3′-ssDNA tail lengths, with no sign of oligomerization being discerned. Measurements of ATPase activity further indicated that BLM helicase might still function as monomers in resolving highly structured DNAs such as Holliday junctions and D-loops. These results shed new light on the underlying mechanism of BLM-mediated DNA unwinding and on the molecular and functional basis for the phenotype of heterozygous carriers of BLM syndrome. 相似文献
7.
ATP synthase is a validated drug target for the treatment of tuberculosis, and ATP synthase inhibitors are promising candidate drugs for the treatment of infections caused by other slow-growing mycobacteria, such as Mycobacterium leprae and Mycobacterium ulcerans. ATP synthase is an essential enzyme in the energy metabolism of Mycobacterium tuberculosis; however, no biochemical data are available to characterize the role of ATP synthase in slow-growing mycobacterial strains. Here, we show that inverted membrane vesicles from the slow-growing model strain Mycobacterium bovis BCG are active in ATP synthesis, but ATP synthase displays no detectable ATP hydrolysis activity and does not set up a proton-motive force (PMF) using ATP as a substrate. Treatment with methanol as well as PMF activation unmasked the ATP hydrolysis activity, indicating that the intrinsic subunit ? and inhibitory ADP are responsible for the suppression of hydrolytic activity. These results suggest that the enzyme is needed for the synthesis of ATP, not for the maintenance of the PMF. For the development of new antimycobacterial drugs acting on ATP synthase, screening for ATP synthesis inhibitors, but not for ATP hydrolysis blockers, can be regarded as a promising strategy. 相似文献
8.
The presence of medium Pi (half-maximal concentration of 20 microM at pH 8.0) was found to be required for the prevention of the rapid decline in the rate of proton-motive force (pmf)-induced ATP hydrolysis by Fo.F1 ATP synthase in coupled vesicles derived from Paracoccus denitrificans. The initial rate of the reaction was independent of Pi. The apparent affinity of Pi for its "ATPase-protecting" site was strongly decreased with partial uncoupling of the vesicles. Pi did not reactivate ATPase when added after complete time-dependent deactivation during the enzyme turnover. Arsenate and sulfate, which was shown to compete with Pi when Fo.F1 catalyzed oxidative phosphorylation, substituted for Pi as the protectors of ATPase against the turnover-dependent deactivation. Under conditions where the enzyme turnover was not permitted (no ATP was present), Pi was not required for the pmf-induced activation of ATPase, whereas the presence of medium Pi (or sulfate) delayed the spontaneous deactivation of the enzyme which was induced by the membrane de-energization. The data are interpreted to suggest that coupled and uncoupled ATP hydrolysis catalyzed by Fo.F1 ATP synthases proceeds via different intermediates. Pi dissociates after ADP if the coupling membrane is energized (no E.ADP intermediate exists). Pi dissociates before ADP during uncoupled ATP hydrolysis, leaving the E.ADP intermediate which is transformed into the inactive ADP(Mg2+)-inhibited form of the enzyme (latent ATPase). 相似文献
9.
Human guanylate-binding protein 1 (hGBP1) belongs to the superfamily of large, dynamin-related GTPases. The expression of hGBP1 is induced by stimulation with interferons (mainly interferon-γ), and it plays a role in different cellular responses to inflammatory cytokines, e.g. pathogen defence, control of proliferation, and angiogenesis. Although other members of the dynamin superfamily show a diversity of cellular functions, they share a common GTPase mechanism that relies on nucleotide-controlled oligomerization and self-activation of the GTPase. Previous structural studies on hGBP1 have suggested a mechanism of GTPase and GDPase activity that, as a critical step, involves dimerization of the large GTP-binding domains. In this study, we show that the guanine cap of hGBP1 is the key structural element responsible for dimerization, and is thereby essential for self-activation of the GTPase activity. Studies of concentration-dependent GTP hydrolysis showed that mutations of residues in the guanine cap, in particular Arg240 and Arg244, resulted in higher dissociation constants of the dimer, whereas the maximum hydrolytic activity was largely unaffected. Additionally, we identified an intramolecular polar contact (Lys62-Asp255) whose mutation leads to a loss of self-activation capability and controlled oligomer formation. We suggest that this contact structurally couples the guanine cap to the switch regions of the GTPase, translating the structural changes that occur upon nucleotide binding to a change in oligomerization and self-activation. 相似文献
10.
Transient receptor potential melastatin 2 (TRPM2) is a Ca(2+)-permeable cationic channel in the TRP channel family. The channel activity can be regulated by reactive oxygen species (ROS) and cellular acidification, which has been implicated to the pathogenesis of diabetes and some neuronal disorders. However, little is known about the effect of redox-active metal ions, such as copper, on TRPM2 channels. Here we investigated the effect of divalent copper on TRPM2. TRPM2 channel was over-expressed in HEK-293 cells and the whole-cell current was recorded by patch clamp. We found the whole-cell current evoked by intracellular ADP-ribose was potently inhibited by Cu(2+) with a half maximal inhibitory concentration (IC(50)) of 2.59 μM. The inhibitory effect was irreversible. The single channel activity was abolished in the outside-out patches, and intracellular application of Cu(2+) did not prevent the channel activation, suggesting that the action site of Cu(2+) is located in the extracellular domains of the channel. TRPM2 current was also blocked by Hg(2+), Pb(2+), Fe(2+) and Se(2+). We concluded that Cu(2+) is a potent TRPM2 channel blocker. The sensitivity of TRPM2 channel to heavy metal ions could be a new mechanism for the pathogenesis of some metal ion-related diseases. 相似文献
11.
ATP hydrolysis activity of the DEAD box protein Rok1p is required for in vivo ROK1 function.
下载免费PDF全文

The yeast ROK1 gene has been initially identified as a high copy plasmid suppressor of the kem1 null mutation and implicated in microtubule-mediated functions. Based on the deduced amino acid sequence of the ROK1 gene, Rok1p has been classified in the DEAD protein family of ATP-dependent RNA helicases. A subsequent report has suggested that Rok1p is required for rRNA processing. We report here the first study on the biochemical activity associated with Rok1p. The MBP-Rok1 hybrid protein was synthesized in Escherichia coli and purified by amylose affinity column and ion exchange chromatography. Rok1p has ATP hydrolysis activity. The significance of the conserved ATPase domains was addressed by generating a series of amino acid substitution mutations in these domains. Both in vivo lethality tests of the mutations and biochemical characterization of the mutant proteins suggest that ATP hydrolysis activity of Rok1p is essential for ROK1 function. The ATPase activity of Rok1p appears to be independent of single-stranded RNA. Furthermore, replacement of the first Arg in the HRIGR domain, the known RNA-binding domain, with Thr, Ile or Lys has no detectable effect on in vivo ROK1 function. The lack of RNA dependency and some of the mutational phenotypes of ROK1 differentiate this gene from other members of the family. 相似文献
12.
Oxidative stress plays an important role in neurodegenerative diseases. Reactive oxygen species (ROS)-mediated stress in microglia in vivo could result in cellular injuries and preferentially induces neuronal injury. Corilagin, a novel member of the phenolic tannin family, has been shown to possess antioxidant properties. In this study, we investigated the effects of corilagin on tert-butyl hydroperoxide (TBHP)-induced injury in cultured N9 murine microglial cells and the underlying mechanisms by a methyltetrazolium assay and oxidative damage assay. We found that exposure of N9 cells to TBHP induced cytotoxicity as demonstrated by cell shrinkage, loss of cell viability, increased lactate dehydrogenase (LDH) leakage, and increased intracellular levels of ROS. By contrast, TBHP reduced both superoxide dismutase activity and total cell anti-oxidation capacity, but glutathione was not reduced. Moreover, TBHP treatment was associated with the loss of mitochondrial membrane potential, and it induced cell apoptosis through the mitochondrial-mediated pathway involving the down-regulation of Bcl-2 expression and up-regulation of the Bax/Bcl-2 ratio. Interestingly, pre-treatment with corilagin reversed these reactions. These data collectively indicated that corilagin could attenuate TBHP-induced oxidative stress injury in microglial cells, and its protective effects may be ascribed to its antioxidant and antiapoptotic properties. Our findings suggest that corilagin should be a potential candidate for the treatment of oxidative stress-induced neurodegenerative diseases. 相似文献
13.
14.
The chaperonins GroEL and GroES were shown to facilitate the refolding of urea-unfolded rhodanese in an ATP-dependent process at 25 or 37 degrees C. A diminished chaperonin activity was observed at 10 degrees C, however. At low temperature, GroEL retains its ability to form a complex with urea-unfolded rhodanese or with GroES. GroEL is also able to bind ATP at 10 degrees C. Interestingly, the ATPase activity of GroEL was highly decreased at low temperatures. Hydrolysis of ATP by GroEL was 60% less at 10 degrees C than at 25 degrees C. We conclude that the reduced hydrolysis of ATP by GroEL is a major but perhaps not the only factor responsible for the diminished chaperonin activity at 10 degrees C. GroEL may function primarily at higher temperatures in which the ability of GroEL to hydrolyze ATP is not compromised. 相似文献
15.
A. Buffon M.R. Wink B.V. Ribeiro E.A. Casali T.A. Libermann L.F. Zerbini S.C. Robson J.J.F. Sarkis 《Biochimica et Biophysica Acta (BBA)/General Subjects》2007
In this study, we evaluated the NTPDases and ecto-5′-nucleotidase (CD73) expression profiles and the pattern of adenine nucleotide hydrolysis in rats submitted to the Walker 256 tumor model, 6, 10 and 15 days after the subcutaneous inoculation. Using RT-PCR analysis, we identified mRNA for all of the members of the ecto-nucleoside triphosphate diphosphohydrolase family investigated and a 5′-nucleotidase. By quantitative real-time PCR, Entpd1 (Cd39) and Entpd2 (Cd39L1) and CD73 were identified as the dominant genes expressed by the Walker 256 tumor, at all times studied. Extracellular adenine nucleotide hydrolysis by the Walker 256 tumor was estimated by HPLC analysis. Rapid hydrolysis of extracellular ATP by the tumor cells was observed, leading to the formation of adenosine and inosine in cells obtained from solid tumors at 6 and 10 days after inoculation. Cells obtained from solid tumors at 15 days of growth presented high levels of AMP and presented adenosine as a final product after 90 min of incubation. Results demonstrate that the presence of NTPDases and 5′-nucleotidase enzymes in Walker 256 tumor cells may be important for regulation of the extracellular adenine nucleotides/adenine nucleoside ratio, therefore leading to tumor growth. 相似文献
16.
Tanaka AR Abe-Dohmae S Ohnishi T Aoki R Morinaga G Okuhira K Ikeda Y Kano F Matsuo M Kioka N Amachi T Murata M Yokoyama S Ueda K 《The Journal of biological chemistry》2003,278(10):8815-8819
ABCA1 mediates release of cellular cholesterol and phospholipid to form high density lipoprotein (HDL). The three different mutants in the first extracellular domain of human ABCA1 associated with Tangier disease, R587W, W590S, and Q597R, were examined for their subcellular localization and function by using ABCA1-GFP fusion protein stably expressed in HEK293 cells. ABCA1-GFP expressed in HEK293 was fully functional for apoA-I-mediated HDL assembly. Immunostaining and confocal microscopic analyses demonstrated that ABCA1-GFP was mainly localized to the plasma membrane (PM) but also substantially in intracellular compartments. All three mutant ABCA1-GFPs showed no or little apoA-I-mediated HDL assembly. R587W and Q597R were associated with impaired processing of oligosaccharide from high mannose type to complex type and failed to be localized to the PM, whereas W590S did not show such dysfunctions. Vanadate-induced nucleotide trapping was examined to elucidate the mechanism for the dysfunction in the W590S mutant. Photoaffinity labeling of W590S with 8-azido-[alpha-(32)P]ATP was stimulated by adding ortho-vanadate in the presence of Mn(2+) as much as in the presence of wild-type ABCA1. These results suggest that the defect of HDL assembly in R587W and Q597R is due to the impaired localization to the PM, whereas W590S has a functional defect other than the initial ATP binding and hydrolysis. 相似文献
17.
Presence of ectonucleotidases in cultured chromaffin cells: hydrolysis of extracellular adenine nucleotides 总被引:5,自引:0,他引:5
The granular ATP released from chromaffin cells during the secretory response can be hydrolyzed by ectonucleotidases that are present in the plasma membrane of these cells. The ecto-ATPase activity showed a Km for ATP of 250 +/- 18 microM and a VMAX value of 167 +/- 25 nmol/10(6) cells x min (1.67 mumol/mg protein x min) for cultured chromaffin cells, while the ecto-ADPase activity showed a Km value for ADP of 375 +/- 40 microM and a VMAX of 125 +/- 20 nmol/10(6) cells x min (1.25 mumol/mg protein x min). The ecto 5'-nucleotidase activity of cultured chromaffin cells was more specific for the purine nucleotides, AMP and IMP, than for the pirimidine nucleotides, CMP and TMP. The Km for AMP was 55 +/- 5 microM and the VMAX value was 4.3 +/- 0.8 nmol/10(6) cells x min (43 nmol/mg protein x min). The nonhydrolyzable analogs of ADP and ATP, alpha, beta-methylene-adenosine 5'-diphosphate and adenylyl-(beta, gamma-methylene)-diphosphonate were good inhibitors of ecto 5'-nucleotidase activity, the KI values being 73.3 +/- 3.5 nM and 193 +/- 29 nM, respectively. The phosphatidylinositol-specific phospholipase C released the ecto-5'-nucleotidase from the chromaffin cells in culture, thus suggesting an anchorage through phosphatidylinositol to plasma membranes. The presence of ectonucleotidases in chromaffin cells may permit the recycling of the extracellular ATP exocytotically released from these neural cells. 相似文献
18.
Wei Hong Linfeng Chen Weizhen Gao 《Biochemical and biophysical research communications》2009,390(1):77-303
The 70-kDa heat shock protein (Hsp70) is involved in providing the appropriate conformation of various nuclear hormone receptors, including the glucocorticoid receptor (GR). The Bcl-2 associated athanogene 1M (Bag-1M) is known to downregulate the DNA binding by the GR. Also, Bag-1M interacts with the ATPase domain of Hsp70 to modulate the release of the substrate from Hsp70. In this study, we demonstrate that ATP hydrolysis enhances Bag-1M-mediated inhibition of the DNA binding by the GR. However, the inhibitory effect of Bag-1M was abolished when the intracellular ATP was depleted. In addition, a Bag-1M mutant lacking the interaction with Hsp70 did not influence the GR to bind DNA, suggesting the interaction of Bag-1M with Hsp70 in needed for its negative effect. These results indicate that ATP hydrolysis is essential for Bag-1M-mediated inhibition of the DNA binding by the GR and Hsp70 is a mediator for this process. 相似文献
19.
Cooperativity in ATP hydrolysis by GroEL is increased by GroES. 总被引:3,自引:0,他引:3
The kinetics of ATP hydrolysis by the 'molecular chaperone' GroEL and the inhibition of this hydrolysis by GroES have been studied in more detail. It is shown that the hydrolysis of ATP by GroEL is cooperative with respect to ATP with a Hill coefficient of 1.86 (+/- 0.13). In the presence of GroES, there is an increase in the degree of cooperativity with a Hill coefficient of 3.01 (+/- 0.18). The observed cooperativity is not due to dissociation of the GroEL oligomer into smaller units but more probably involves structural changes within the GroEL oligomer. 相似文献
20.
We have shown in previous research that the loss of phosphatidylglycerol and cardiolipin caused by disruption of the PGS1 gene is lethal for the petite-negative yeast Kluyveromyces lactis . This present study demonstrates the role and mechanism of atp2.1 in the suppression of pgs1 lethality in K. lactis cells. Phenotypic characterization has shown that a strain lacking the phosphatidylglycerolphosphate synthase (atp2.1pgs1Δ) possessed a markedly impaired respiratory chain, very low endogenous respiration, and uncoupled mitochondria. As a result the mutant strain was unable to generate a sufficient mitochondrial membrane potential via respiration. The atp2.1 suppressor mutation enabled an increase in the affinity of F(1)-ATPase for ATP in the hydrolytic reaction, resulting in the maintenance of sufficient membrane potential for the biogenesis of mitochondria and survival of cells lacking anionic phospholipid biosynthesis. 相似文献