首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Purinergic receptors are present in most tissues and thought to be involved in various signalling pathways, including neural signalling, cell metabolism and local regulation of the microcirculation in skeletal muscles. The present study aims to determine the distribution and intracellular content of purinergic receptors in skeletal muscle fibres in patients with type 2 diabetes and age-matched controls. Muscle biopsies from vastus lateralis were obtained from six type 2 diabetic patients and seven age-matched controls. Purinergic receptors were analysed using light and confocal microscopy in immunolabelled transverse sections of muscle biopsies. The receptors P2Y(4), P2Y(11) and likely P2X(1) were present intracellularly or in the plasma membrane of muscle fibres and were thus selected for further detailed morphological analysis. P2X(1) receptors were expressed in intracellular vesicles and sarcolemma. P2Y(4) receptors were present in sarcolemma. P2Y(11) receptors were abundantly and diffusely expressed intracellularly and were more explicitly expressed in type I than in type II fibres, whereas P2X(1) and P2Y(4) showed no fibre-type specificity. Both diabetic patients and healthy controls showed similar distribution of receptors. The current study demonstrates that purinergic receptors are located intracellularly in human skeletal muscle fibres. The similar cellular localization of receptors in healthy and diabetic subjects suggests that diabetes is not associated with an altered distribution of purinergic receptors in skeletal muscle fibres. We speculate that the intracellular localization of purinergic receptors may reflect a role in regulation of muscle metabolism; further studies are nevertheless needed to determine the function of the purinergic system in skeletal muscle cells.  相似文献   

2.
It is now widely recognised that extracellular nucleotides, signalling via purinergic receptors, participate in numerous biological processes in most tissues. It has become evident that extracellular nucleotides have significant regulatory effects in the musculoskeletal system. In early development, ATP released from motor nerves along with acetylcholine acts as a cotransmitter in neuromuscular transmission; in mature animals, ATP functions as a neuromodulator. Purinergic receptors expressed by skeletal muscle and satellite cells play important pathophysiological roles in their development or repair. In many cell types, expression of purinergic receptors is often dependent on differentiation. For example, sequential expression of P2X5, P2Y1 and P2X2 receptors occurs during muscle regeneration in the mdx model of muscular dystrophy. In bone and cartilage cells, the functional effects of purinergic signalling appear to be largely negative. ATP stimulates the formation and activation of osteoclasts, the bone-destroying cells. Another role appears to be as a potent local inhibitor of mineralisation. In osteoblasts, the bone-forming cells, ATP acts via P2 receptors to limit bone mineralisation by inhibiting alkaline phosphatase expression and activity. Extracellular ATP additionally exerts significant effects on mineralisation via its hydrolysis product, pyrophosphate. Evidence now suggests that purinergic signalling is potentially important in several bone and joint disorders including osteoporosis, rheumatoid arthritis and cancers. Strategies for future musculoskeletal therapies might involve modulation of purinergic receptor function or of the ecto-nucleotidases responsible for ATP breakdown or ATP transport inhibitors.  相似文献   

3.
Nucleotides are released from all cells through regulated pathways or as a result of plasma membrane damage or cell death. Outside the cell, nucleotides act as signalling molecules triggering multiple responses via specific plasma membrane receptors of the P2 family. In the nervous system, purinergic signalling has a key function in neurotransmission. Outside the nervous system, purinergic signalling is one of the major modulators of basal tissue homeostasis, while its dysregulation contributes to the pathogenesis of various disease, including inflammation and cancer. Pre-clinical and clinical evidence shows that selective P2 agonists or antagonists are effective treatments for many pathologies, thus highlighting the relevance of extracellular nucleotides and P2 receptors as therapeutic targets.  相似文献   

4.
The pancreas is a complex gland performing both endocrine and exocrine functions. In recent years there has been increasing evidence that both endocrine and exocrine cells possess purinergic receptors, which influence processes such as insulin secretion and epithelial ion transport. Most commonly, these processes have been viewed separately. In beta cells, stimulation of P2Y(1) receptors amplifies secretion of insulin in the presence of glucose. Nucleotides released from secretory granules could also contribute to autocrine/paracrine regulation in pancreatic islets. In addition to P2Y(1) receptors, there is also evidence for other P2 and adenosine receptors in beta cells (P2Y(2), P2Y(4), P2Y(6), P2X subtypes and A(1) receptors) and in glucagon-secreting alpha cells (P2X(7), A(2) receptors). In the exocrine pancreas, acini release ATP and ATP-hydrolysing and ATP-generating enzymes. P2 receptors are prominent in pancreatic ducts, and several studies indicate that P2Y(2), P2Y(4), P2Y(11), P2X(4) and P2X(7) receptors could regulate secretion, primarily by affecting Cl(-) and K(+) channels and intracellular Ca(2+) signalling. In order to understand the physiology of the whole organ, it is necessary to consider the full complement of purinergic receptors on different cells as well as the structural and functional relation between various cells within the whole organ. In addition to the possible physiological function of purinergic receptors, this review analyses whether the receptors could be potential therapeutic targets for drug design aimed at treatment of pancreatic diseases.  相似文献   

5.
Purinergic signalling in neurons and glia is relevant to acute and chronic neurological diseases. In particular, emerging evidence indicates that adenosine can play a neuromodulatory role in balancing GABA and glutamate neurotransmission and thus, have a tremendous therapeutic potential for the treatment of epilepsy. On the other hand, signalling via P2 purinergic receptors contributes to post-ischemic injury to grey and white matter as well as endogenous neurogenesis in response to tissue damage. Likewise, P2 receptors mediate demyelinating damage in animal models of multiple sclerosis, and recent evidences suggest that P2X receptor function is altered in this disorder. In all instances, complex interactions between neurons and glia via purine signals are relevant to disease and its prevention or attenuation. Here, we review current knowledge on how purinergic signalling is involved in the pathophysiology of CNS diseases, with an emphasis in epilepsy, ischemia and multiple sclerosis. Understanding in depth the primary and secondary mechanisms relevant to the control of excitation and/or damage by purines will undoubtedly lead to the development of novel therapies based on the use of drugs acting at the purinergic system.  相似文献   

6.
There are multiple roles for purinergic signalling in both male and female reproductive organs. ATP, released as a cotransmitter with noradrenaline from sympathetic nerves, contracts smooth muscle via P2X1 receptors in vas deferens, seminal vesicles, prostate and uterus, as well as in blood vessels. Male infertility occurs in P2X1 receptor knockout mice. Both short- and long-term trophic purinergic signalling occurs in reproductive organs. Purinergic signalling is involved in hormone secretion, penile erection, sperm motility and capacitation, and mucous production. Changes in purinoceptor expression occur in pathophysiological conditions, including pre-eclampsia, cancer and pain.  相似文献   

7.
8.
Adenosine 5'-triphosphate (ATP) was identified in 1970 as the transmitter responsible for non-adrenergic, non-cholinergic neurotransmission in the gut and bladder and the term 'purinergic' was coined. Purinergic cotransmission was proposed in 1976 and ATP is now recognized as a cotransmitter in all nerves in the peripheral and central nervous systems. P1 (adenosine) and P2 (ATP) receptors were distinguished in 1978. Cloning of these receptors in the early 1990s was a turning point in the acceptance of the purinergic signalling hypothesis. There are both short-term purinergic signalling in neurotransmission, neuromodulation and secretion and long-term (trophic) purinergic signalling of cell proliferation, differentiation and death in development and regeneration. Much is known about the mechanisms of ATP release and its breakdown by ectonucleotidases. Recently, there has been emphasis on purinergic pathophysiology, including neurodegenerative and neuropsychiatric disorders. Purinergic therapeutic strategies are being developed for treatment of gut, kidney, bladder, lung, skeletal and reproductive system disorders, pain and cancer.  相似文献   

9.
Most cells express more than one receptor plus degrading enzymes for adenine nucleotides or nucleosides, and cellular responses to purines are rarely compatible with the actions of single receptors. Therefore, these receptors are viewed as components of a combinatorial receptor web rather than self-dependent entities, but it remained unclear to what extent they can associate with each other to form signalling units. P2Y(1), P2Y(2), P2Y(12), P2Y(13), P2X(2), A(1), A(2A) receptors and NTPDase1 and -2 were expressed as fluorescent fusion proteins which were targeted to membranes and signalled like the unlabelled counterparts. When tested by FRET microscopy, all the G protein-coupled receptors proved able to form heterooligomers with each other, and P2Y(1), P2Y(12), P2Y(13), A(1), A(2A), and P2X(2) receptors also formed homooligomers. P2Y receptors did not associate with P2X, but G protein-coupled receptors formed heterooligomers with NTPDase1, but not NTPDase2. The specificity of prototypic interactions (P2Y(1)/P2Y(1), A(2A)/P2Y(1), A(2A)/P2Y(12)) was corroborated by FRET competition or co-immunoprecipitation. These results demonstrate that G protein-coupled purine receptors associate with each other and with NTPDase1 in a highly promiscuous manner. Thus, purinergic signalling is not only determined by the expression of receptors and enzymes but also by their direct interaction within a previously unrecognized multifarious membrane network.  相似文献   

10.
Immune cells express receptors for extracellular nucleotides named P2 receptors. P2 receptors transduce signals delivered by nucleotides present in the extracellular environment. Accruing evidence shows that purinergic signalling has a profound effect on multiple immune cell responses such as T lymphocyte proliferation, chemotaxis, cytokine release, phagocytosis, Ag presentation and cytotoxicity. This makes P2 receptors an attractive target for the therapy of immuno-mediated disease and cancer.  相似文献   

11.
Stimulation of almost all mammalian cell types leads to the release of cellular ATP and autocrine feedback through a diverse array of purinergic receptors. Depending on the types of purinergic receptors that are involved, autocrine signalling can promote or inhibit cell activation and fine-tune functional responses. Recent work has shown that autocrine signalling is an important checkpoint in immune cell activation and allows immune cells to adjust their functional responses based on the extracellular cues provided by their environment. This Review focuses on the roles of autocrine purinergic signalling in the regulation of both innate and adaptive immune responses and discusses the potential of targeting purinergic receptors for treating immune-mediated disease.  相似文献   

12.
Purinergic signalling plays major roles in the physiology and pathophysiology of digestive organs. Adenosine 5′-triphosphate (ATP), together with nitric oxide and vasoactive intestinal peptide, is a cotransmitter in non-adrenergic, non-cholinergic inhibitory neuromuscular transmission. P2X and P2Y receptors are widely expressed in myenteric and submucous enteric plexuses and participate in sympathetic transmission and neuromodulation involved in enteric reflex activities, as well as influencing gastric and intestinal epithelial secretion and vascular activities. Involvement of purinergic signalling has been identified in a variety of diseases, including inflammatory bowel disease, ischaemia, diabetes and cancer. Purinergic mechanosensory transduction forms the basis of enteric nociception, where ATP released from mucosal epithelial cells by distension activates nociceptive subepithelial primary afferent sensory fibres expressing P2X3 receptors to send messages to the pain centres in the central nervous system via interneurons in the spinal cord. Purinergic signalling is also involved in salivary gland and bile duct secretion.  相似文献   

13.
The movement of microglia is regulated mainly by P1 and P2 purinergic receptors, which are activated by various nucleotides and their metabolites. Recently, such purinergic signalling has been spotlighted because of potential roles in the pathophysiologies of neurodegenerative and neuropsychiatric disorders. To understand the characteristics of microglia in relation of P1 and P2 signalling, we investigated the ectoenzymes expressed in microglia. At first, we profiled the expression of all known ectoenzymes in cultured microglia. We found that, like NTPDase1 (ectonucleoside triphosphate diphosphohydrolase 1, CD39), NPP1 (ectonucleotide pyrophosphatase/phosphodiesterase 1, PC-1) is also highly expressed in primary cultured murine microglia. Knockdown of NPP1 significantly reduced ATP hydrolysis and Pi production in cultured microglia. In addition, the knockdown of NPP1 enhanced basal nucleotide-stimulating responses of cultured microglia, such as phagocytosis and cell migration, and these results were very similar to NTPDase1 knockdown results. Moreover, inhibition of the adenosine receptors by caffeine treatment reduced phagocytosis of NPP1 knock downed-cultured microglia. In conclusion, we suggest that these potent ectoenzymes of primary cultured murine microglia, NPP1 together with CD73 (ecto-5′-nucleotidase) maintain the adenosine levels for triggering nucleotide-stimulating responses.  相似文献   

14.
Pharmacological manipulation of P2X and P2Y receptors has been critical to the elucidation of the biological roles of these receptors within a multitude of physiological and pathological processes. Initial purinergic signalling research made use of compounds based on pyridoxal phosphate, suramin and nucleotide analogues; recently developed compounds are often derivatives of these early tools. Tocris Bioscience first entered the field of purinergic signalling reagents with the commercial release of the pyridoxal phosphate derivative, iso-PPADS. During the past two decades, Tocris has assembled a collection of over 50 compounds for P2 receptor modulation, including research tools commercialised from both academic and industrial laboratories. Recently, a number of P2X subtype-selective compounds have been generated by pharmaceutical company medicinal chemistry programmes, supplementing our range of P2Y-selective compounds. Here, we detail the current, commercially available agonists and antagonists of P2X1,2/3,3,4,7 and P2Y1,6,11,12 receptors; considered together, they form the foundations of a comprehensive P2 receptor pharmacological ‘toolkit’.  相似文献   

15.
Felix  R. A.  Martin  S.  Pinion  S.  Crawford  D. J. 《Purinergic signalling》2011,8(1):101-112

Pharmacological manipulation of P2X and P2Y receptors has been critical to the elucidation of the biological roles of these receptors within a multitude of physiological and pathological processes. Initial purinergic signalling research made use of compounds based on pyridoxal phosphate, suramin and nucleotide analogues; recently developed compounds are often derivatives of these early tools. Tocris Bioscience first entered the field of purinergic signalling reagents with the commercial release of the pyridoxal phosphate derivative, iso-PPADS. During the past two decades, Tocris has assembled a collection of over 50 compounds for P2 receptor modulation, including research tools commercialised from both academic and industrial laboratories. Recently, a number of P2X subtype-selective compounds have been generated by pharmaceutical company medicinal chemistry programmes, supplementing our range of P2Y-selective compounds. Here, we detail the current, commercially available agonists and antagonists of P2X1,2/3,3,4,7 and P2Y1,6,11,12 receptors; considered together, they form the foundations of a comprehensive P2 receptor pharmacological ‘toolkit’.

  相似文献   

16.
P2 receptors in cardiovascular regulation and disease   总被引:2,自引:0,他引:2  
The role of ATP as an extracellular signalling molecule is now well established and evidence is accumulating that ATP and other nucleotides (ADP, UTP and UDP) play important roles in cardiovascular physiology and pathophysiology, acting via P2X (ion channel) and P2Y (G protein-coupled) receptors. In this article we consider the dual role of ATP in regulation of vascular tone, released as a cotransmitter from sympathetic nerves or released in the vascular lumen in response to changes in blood flow and hypoxia. Further, purinergic long-term trophic and inflammatory signalling is described in cell proliferation, differentiation, migration and death in angiogenesis, vascular remodelling, restenosis and atherosclerosis. The effects on haemostasis and cardiac regulation is reviewed. The involvement of ATP in vascular diseases such as thrombosis, hypertension and diabetes will also be discussed, as well as various heart conditions. The purinergic system may be of similar importance as the sympathetic and renin-angiotensin-aldosterone systems in cardiovascular regulation and pathophysiology. The extracellular nucleotides and their cardiovascular P2 receptors are now entering the phase of clinical development. An erratum to this article can be found at  相似文献   

17.
Purinergic signalling is involved in a number of physiological and pathophysiological activities in the lower urinary tract. In the bladder of laboratory animals there is parasympathetic excitatory cotransmission with the purinergic and cholinergic components being approximately equal, acting via P2X1 and muscarinic receptors, respectively. Purinergic mechanosensory transduction occurs where ATP, released from urothelial cells during distension of bladder and ureter, acts on P2X3 and P2X2/3 receptors on suburothelial sensory nerves to initiate the voiding reflex, via low threshold fibres, and nociception, via high threshold fibres. In human bladder the purinergic component of parasympathetic cotransmission is less than 3 %, but in pathological conditions, such as interstitial cystitis, obstructed and neuropathic bladder, the purinergic component is increased to 40 %. Other pathological conditions of the bladder have been shown to involve purinoceptor-mediated activities, including multiple sclerosis, ischaemia, diabetes, cancer and bacterial infections. In the ureter, P2X7 receptors have been implicated in inflammation and fibrosis. Purinergic therapeutic strategies are being explored that hopefully will be developed and bring benefit and relief to many patients with urinary tract disorders.  相似文献   

18.

Background  

Orthologs of the vertebrate ATP gated P2X channels have been identified in Dictyostelium and green algae, demonstrating that the emergence of ionotropic purinergic signalling was an early event in eukaryotic evolution. However, the genomes of a number of animals including Drosophila melanogaster and Caenorhabditis elegans, both members of the Ecdysozoa superphylum, lack P2X-like proteins, whilst other species such as the flatworm Schistosoma mansoni have P2X proteins making it unclear as to what stages in evolution P2X receptors were lost. Here we describe the functional characterisation of a P2X receptor (Hd P2X) from the tardigrade Hypsibius dujardini demonstrating that purinergic signalling is preserved in some ecdysozoa.  相似文献   

19.
There is considerable evidence that purines are vasoactive molecules involved in the regulation of blood flow. Adenosine is a well known vasodilator that also acts as a modulator of the response to other vasoactive substances. Adenosine exerts its effects by interacting with adenosine receptors. These are metabotropic G-protein coupled receptors and include four subtypes, A(1), A(2A), A(2B) and A(3). Adenosine triphosphate (ATP) is a co-transmitter in vascular neuroeffector junctions and is known to activate two distinct types of P2 receptors, P2X (ionotropic) and P2Y (metabotropic). ATP can exert either vasoconstrictive or vasorelaxant effects, depending on the P2 receptor subtype involved. Splanchnic vascular beds are of particular interest, as they receive a large fraction of the cardiac output. This review focus on purinergic receptors role in the splanchnic vasomotor control. Here, we give an overview on the distribution and diversity of effects of purinergic receptors in splanchnic vessels. Pre- and post-junctional receptormediated responses are summarized. Attention is also given to the interactions between purinergic receptors and other receptors in the splanchnic circulation.  相似文献   

20.
The consequences of purinoceptor activation on calcium signalling, inositol phosphate metabolism, protein secretion and the actin cytoskeleton were demonstrated in the WRK-1 cell line. Extracellular ATP was used as a secretagogue to induce a rise in intracellular Ca(2+) concentration ([Ca(2+)](i)), acting via P2x purinergic receptors, which causes actin skeleton disaggregation and protein secretion. ATP bound specifically to purinergic receptors, with Ki of 0.8 microM. The magnitude order for binding of different nucleotides was alpha beta-Met-ATP >or= dATPalphaS > ATP >or= ADP > UTP > AMP > suramin. No increase in inositol phosphates (IPs) was observed after ATP application suggesting that the purinergic sites in WRK-1 cells are not of a P2y type. ATP (1-100 microM) caused a concentration-dependent increase in [Ca(2+)](i)(EC(50)= 30 microM). The responses were reproducible without any desensitization over several applications. The response to ATP was abolished when extracellular calcium ([Ca(2+)](e)) was reduced to 100 nM. A non-specific purinergic antagonist, suramin, reversibly inhibited the ATP-response suggesting that ATP is able to bind to P2x purinergic sites to trigger Ca(2+) entry and increase of [Ca(2+)](i). ATP induced a concentration-dependent disaggregation of actin and exocytotic release of proteins both, which were dependent upon [Ca(2+)](e). Similarly, alpha,beta-Met-ATP, a potent P2x agonist also stimulated Ca(2+) mobilization, actin network destructuration, and protein release. In the isolated rat neurohypophysial nerve terminals, ATP was shown to act as a physiological stimulus for vasopressin release via Ca(2+) entry through a P2x receptor [6]. Here, we show that in these nerve terminals, ATP is also able to induce actin disaggregation by a Ca(2+) dependent mechanism. Thus, actin cytoskeleton alterations induced by ATP through activation of P2x receptors could be a prelude to exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号