首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The conservation and restoration of degraded landscapes continues to be a major activity with the demand for seed increasing to meet growing global targets. Seed collected from natural plant populations is often irregular and unpredictable, limiting the diversity of species that can be conserved through restoration programs and the area that can be restored. Seed production areas (SPAs; seed orchards, seed increase) are one option for improving seed supply and quality to meet the demand from conservation and restoration programs. We evaluated genetic diversity, inbreeding and mating system parameters in adults and seed from remnants and SPAs of Acacia montana and Dodonaea viscosa subsp. cuneata, two key restoration species in south-eastern Australia. Overall, we found no significant differences in genetic diversity between remnants and SPAs of both species or between adult and seed cohorts. In contrast, we found significant inbreeding in many remnants and their seed crops suggesting that some inbred seed were used to establish these SPAs. We also found significant inbreeding in some SPAs and their seed crops and that SPAs were often biased towards one to two source remnants. Additional germplasm is now required to broaden the representativeness of remnants in the SPAs and the genetic base of seed being produced for restoration programs.  相似文献   

2.
Molecular markers provide facilities in order to study genetic diversity and relationship among genotypes. In this study, genetic diversity among 35 genotype of Brassica sp. (belonging B. napus, B. juncea, B. rapa, B. nigra) were determined using 13 ISSR, 3 IRAP markers and 18 REMAP (primer combinations of ISSR and retrotransposon primer). The percentage of polymorphism for ISSR, IRAP and REMAP was 96.38, 94 and 96%, respectively. By comparison between markers, ISSRs indicated the highest expected heterozygosity (He) and Shannon’s information index (I) with value of 0.34 and 0.51, respectively, while REMAP marker had by far the highest number of polymorphic bands (340) and marker index (7.1) among all fragments scored over all markers. In pattern of clustering based on Bayesian methods, K = 8 was resulted for combined data clustering that was more organized clustering for genotypes compared to others. This research suggests the combined data of ISSR, IRAP and REMAP markers are most reliable than each solely marker whilst have been clustered genotypes in their taxonomic classification of Brassica without any mixture. Principle coordinate analysis (PCoA) separated 35 genotypes in four groups which all of genotypes were clustered correctly based on their taxonomic classification. The findings of this study provide the valuable insight into the Brassica species relationships in terms of similarity among genotypes which can be helpful in breeding programs, and also demonstrate that retrotransposon markers are legible for genetic diversity and next genetic analysis in Brassica genus.  相似文献   

3.
RAPD and ISSR analyses revealed genetic diversity and relationships among 11 populations of two closely related northeast China Vicia species, Vicia ramuliflora and V. unijuga. Both methods yielded similar and complementary results, showing high genetic diversity. Vicia ramuliflora had 100% polymorphic loci in both RAPD and ISSR, and V. unijuga had 100% polymorphic loci for RAPD and 98.96% for ISSR. Genetic differentiation was moderate among populations of each species. Genetic variation was distributed mainly within populations for the two species. The high level of gene flow was important for the allocation of genetic variation. The UPGMA dendrogram and principal coordinates analysis at the level of individuals and populations showed that V. ramuliflora and V. unijuga were more closely related than either of them was to the outgroup species, V. cracca. The small molecular variance of V. ramuliflora and V. unijuga supports the conclusion that these two species had a common ancestor.  相似文献   

4.
Genus Mucuna which is native to China and Eastern India comprises of perennial climbing legume with long slender branches, trifoliate leaves and bear green or brown pod covered with soft or rigid hairs that cause intense irritation. The plants of this genus are agronomically and economically important and commercially cultivated in India, China and other regions of the world. The high degrees of taxonomical confusions exist in Mucuna species that make authentic identification and classification difficult. In the present study, the genetic diversity among the 59 accessions of six species and three varieties of M. pruriens has been assessed using DNA fingerprinting based molecular markers techniques namely randomly amplified polymorphic DNA (RAPD), inter simple sequence repeats (ISSR) and combined dataset of RAPD and ISSR. Also, genetic relationship among two endemic species of Mucuna namely M. imbricata and M. macrocarpa and two varieties namely IIHR hybrid (MHR) and Dhanwantari (MD) with other species under study was investigated by using cluster analysis and principal coordinate analysis. The cluster analysis of RAPD, ISSR and combined dataset of RAPD and ISSR clearly demonstrated the existence of high interspecific variation than intra-specific variation in genus Mucuna. The utility and efficacy of RAPD and ISSR for the study of intra species and interspecies genetic diversity was evident from AMOVA and PCoA analysis. This study demonstrates the genetic diversity in Mucuna species and indicates that these markers could be successfully used to assess genetic variation among the accessions of Mucuna species.  相似文献   

5.
Genetic polymorphism of the Uralian relict plant species, large-flowered foxglove Digitalis grandiflora Mill. (family Scrophulariaceae), was examined using RAPD and ISSR techniques. A total of 149 RAPD and 74ISSR markers were tested. The indices characterizing polymorphism and genetic diversity were calculated. The data obtained pointed to a high level of genetic variation of D. grandiflora (P 95 = 65%). The cenopopulation examined was weakly differentiated with most of genetic diversity accounted by within-population differentiation.  相似文献   

6.
Senna obtusifolia L. is an important medicinal plant in Asia. This study was the first report on the genetic diversity and population structure of S. obtusifolia which were collected from 47 geographic populations widespread in China. Inter-Simple Sequence Repeat (ISSR) and Start Codon Target Polymorphism (SCoT) combined with seeds morphological traits were used to investigate the relationship of 47 populations. 11 ISSR primers yielded 98 polymorphic bands with 81.67% polymorphism. 24 SCoT primers yielded 267 polymorphic bands with 89.59% polymorphism. The number of allele (Na), the number of effective allele (Ne), Nei’s diversity index (H), and Shannon’s information index (I) reflected a high level of genetic diversity of S. obtusifolia species. The greatest genetic distance (G D) existed between Southwest and Northwest (0.4022ISSR/0.5019SCoT), while the Eastern and Northern showed the least genetic distance (0.1751ISSR/0.2186SCoT). The genetic differentiation (Gst) was 0.4875ISSR/0.4434SCoT, and the gene flow (Nm) was 0.5256ISSR/0.6275SCoT, which indicated that gene exchange among four regions was limited. 47 samples were divided into four clusters mainly according to their geographic distribution through clustering and structure analysis. The analysis on the combined data of ISSR and SCoT showed more reliable and superior results than single analysis of ISSR and SCoT. This study explored the effectiveness of ISSR and SCoT markers to evaluate the genetic diversity and population structure of S. obtusifolia and provided useful information for S. obtusifolia germplasm research and breeding program.  相似文献   

7.
The objective of this study was to quantify the molecular diversity and to determine the genetic relationships among Secale spp. and among cultivars of Secale cereale using RAPDs, ISSRs and sequence analysis of six exons of ScMATE1 gene. Thirteen ryes (cultivated and wild) were genotyped using 21 RAPD and 16 ISSR primers. A total of 435 markers (242 RAPDs and 193 ISSRs) were obtained, with 293 being polymorphic (146 RAPDs and 147 ISSRs). Two RAPD and nine ISSR primers generated more than 80% of polymorphism. The ISSR markers were more polymorphic and informative than RAPDs. Further, 69% of the ISSR primers selected achieved at least 70% of DNA polymorphism. The study of six exons of the ScMATE1 gene also demonstrated a high genetic variability that subsists in Secale genus. One difference observed in exon 1 sequences from S. vavilovii seems to be correlated with Al sensitivity in this species. The genetic relationships obtained using RAPDs, ISSRs and exons of ScMATE1 gene were similar. S. ancestrale, S. kuprijanovii and S. cereale were grouped in the same cluster and S. segetale was in another cluster. S. vavilovii showed evidences of not being clearly an isolate species and having great intraspecific differences.  相似文献   

8.
Liposcelis bostrychophila (Psocoptera: Liposcelidae) is a widely distributed pest that can cause considerable economic losses and pose human health risks. Rapid development of insecticide resistance has made L. bostrychophila increasingly difficult to control. To obtain information potentially useful for pest management, genetic diversity and differentiation of L. bostrychophila from five geographic locations in China was studied using inter-simple sequence repeat (ISSR). A total of 104 loci were found by ISSR markers and amplified using 9 selected primers. The percentage of polymorphic bands (PPB) was 91.4%. Shannon’s information index (I) and Nei’s gene diversity (He) indicated high genetic diversity at the species level. Population differentiation (Gst = 0.484) was average in these populations. Analysis of molecular variation (AMOVA) indicated that genetic variation was mainly distributed within populations. Gene flow (Nm = 0.534) was moderate. Cluster analysis showed that genotypes isolated from the same locations displayed higher genetic similarity and permitted the grouping of isolates of L. bostrychophila into three distinct clusters. The correlation between genetic distance and geographic distance was not significant.  相似文献   

9.
Descurainia sophia is a valuable medicinal plant in family of Brassicaceae. To determine the range of diversity amongst D. sophia in Iran, 32 naturally distributed plants belonging to six natural populations of the Iranian plateau were investigated by inter-simple sequence repeat (ISSR) markers. The average percentage of polymorphism produced by 12 ISSR primers was 86 %. The PIC values for primers ranged from 0.22 to 0.40 and Rp values ranged between 6.5 and 19.9. The relative genetic diversity of the populations was not high (Gst =0.32). However, the value of gene flow revealed by the ISSR marker was high (Nm = 1.03). UPGMA clustering method based on Jaccard similarity coefficient grouped the genotypes into two major clusters. Graph results from Neighbor-Net Network generated after a 1000 bootstrap test using Jaccard coefficient, and STRUCTURE analysis confirmed the UPGMA clustering. The first three PCAs represented 57.31 % of the total variation. The high levels of genetic diversity were observed within populations, which is useful in breeding and conservation programs. ISSR is found to be an eligible marker to study genetic diversity of D. sophia.  相似文献   

10.
Capparis spinosa L. (caper bush) is an economically and ecologically important perennial shrub that grows across different regions of Iran. In this study, the genetic diversity and population structure of Iranian genepool of C. spinosa is evaluated using Inter Simple Sequence Repeat (ISSR) markers. Using 10 ISSR primers, 387 DNA fragments (bands) were amplified from the genomic DNA of 92 individuals belonging to twenty-one populations of C. spinosa, of which 378 (97.7%) were polymorphic. High level of genetic diversity (percentage of polymorphic loci = 98.2%, h = 0.1382, I = 0.243), high genetic differentiation (Gst = 0.5234) and low gene flow (Nm = 0.4553) among populations were observed. Caper bush populations were divided into 4 groups in the dendrogram, PCoA plot and Bayesian clustering results, mostly corresponded to their geographic regions. The results showed that there are value in sampling Iranian caper bush populations to look for valuable alleles for use in plant breeding programs.  相似文献   

11.
12.
The Espinhaço Range, in eastern Brazil, has a peculiar landscape that has influenced the vegetation pattern of the region because of its valleys, canyons, ranges and disjunct rock outcrops found at high elevations. In this region, the vegetation type known as campos rupestres (rupestrian fields), which occurs in the disjunct outcrops, has high levels of species richness and endemism. Vellozia gigantea, a 6-m tall dracenoid monocot, is a vulnerable species endemic to this vegetation and has a narrow distribution that extends approximately 27 km. This region is located in a disturbed area, where populations are divided into three geographical groups, separated by a canyon and a valley. For this study, we used ISSR markers to measure the genetic diversity of the species and test the hypothesis that the canyon and the valley constitute geographical barriers to gene flow in V. gigantea. Nine populations and 173 individuals were analyzed using nine ISSR primers, which produced 89 fragments. In spite of being a vulnerable species with a narrow distribution, the populations of V. gigantea have high genetic diversity (mean percentage of polymorphic loci = 56.6%; mean Shannon’s index of diversity = 0.278; mean expected heterozygosity = 0.183). Genetic divergence among populations was high (ΦST = 0.28), and principal coordinate, neighborjoining and Bayesian analyses showed that only the canyon may constitute a partial barrier to gene flow in this species. Groups of populations separated by the canyon should be managed separately because they contain different gene pools.  相似文献   

13.
Phylogeographic barriers, together with habitat loss and fragmentation, contribute to the evolution of a species’ genetic diversity by limiting gene flow and increasing genetic differentiation among populations. Changes in connectivity can thus affect the genetic diversity of populations, which may influence the evolutionary potential of species and the survival of populations in the long term. We studied the genetic diversity of the little known Northern rufous mouse lemur (Microcebus tavaratra), endemic to Northern Madagascar. We focused on the population of M. tavaratra in the Loky–Manambato region, Northern Madagascar, a region delimited by two permanent rivers and characterized by a mosaic of fragmented forests. We genotyped 148 individuals at three mitochondrial loci (D-loop, cytb, and cox2) in all the major forests of the study region. Our analyses suggest that M. tavaratra holds average genetic diversity when compared to other mouse lemur species, and we identified two to four genetic clusters in the study region, a pattern similar to that observed in another lemur endemic to the region (Propithecus tattersalli). The main cluster involved samples from the two mountain forests in the study region, which were connected until recently. However, the river crossing the study region does not appear to be a strict barrier to gene flow in M. tavaratra. Finally, the inferred demographic history of M. tavaratra suggests no detectable departure from stationarity over the last millennia. Comparisons with codistributed species (P. tattersalli and two endemic rodents, Eliurus spp.) suggest both differences and similarities in the genetic clusters identified (i.e., barriers to species dispersal) and in the inferred demographic history. These comparisons suggest that studies of codistributed species are important to understand the effects of landscape features on species and to reconstruct the history of habitat changes in a region.  相似文献   

14.
Enterolobium cyclocarpum is a characteristic legume tree species of seasonally dry tropical forests (SDTFs) of Mesoamerica and northern South America typically used in silvopastoral and agroforestry systems. Remaining populations of E. cyclocarpum in Colombia are severely fragmented owing to the highly degraded state of SDTF in the country, posing threats to both their in situ persistence and their usefulness as seed sources for future planting efforts. We genotyped E. cyclocarpum populations at nine sampling sites across a latitudinal gradient of SDTF in Colombia by means of eight nSSR markers to elucidate the species diversity distribution in the country. Our data suggest that a deep divide seems to have existed between Caribbean and Andean populations of E. cyclocarpum in Colombian SDTF that may date back to the last glacial maximum (~21,000 BP), or longer. However, we only found evidence of genetic differentiation between trees from the southern Cauca River valley and populations at more northern locations. All the latter populations showed signs of admixture which may be the result of human-influenced movement of germplasm, particularly after the introduction of cattle by European settlers. Most of the sampled sites showed heterozygosity scores close to Hardy–Weinberg expectations. Only the three southern-most populations displayed significantly positive values of inbreeding coefficient, potentially affecting their in situ maintenance and their use as seed sources. Based on our findings we identify priority areas for the in situ conservation of remaining E. cyclocarpum populations, and propose a strategy for sourcing of appropriate planting material for use in future tree planting efforts.  相似文献   

15.
The genetic variation in four populations of Adenophora lilifolia (L.) DC., a rare plant species of the Perm region, was analyzed using 56 ISSR markers. The characteristics of DNA polymorphism and population genetic diversity were determined. These data demonstrate a high level of DNA polymorphism (P 95 = 82.14%). The studied A. lilifolia populations are weakly differentiated; the intrapopulation variation is the main contributor to the genetic variation.  相似文献   

16.
To evaluate genetic variation, 27 accessions of allotetraploid species Aegilops kotschyi and Ae. variabilis with the US genome were analyzed using the AFLP, RAPD, and ISSR methods. A total of 316 polymorphic RAPD fragments, 750 polymorphic AFLP fragments, and 234 polymorphic ISSR fragments were obtained. It was demonstrated that the analyzed species were characterized by a considerable level of nuclear genome variation. According to the data of ISSR and RAPD analysis, the average value of the Jaccard similarity coefficient for the accessions of Ae. variabilis from different geographical regions was slightly lower than that for the accessions of Ae. kotschyi. At the same time, AFLP analysis showed no considerable differences in the levels of intraspecific variation of the studied species. Analysis of the summarized RAPD, ISSR, and AFLP marking data in the Structure software program showed that most of the analyzed accessions with high degree of probability could be assigned to one of two groups, the first of which corresponded to Ae. kotschyi and the second corresponded to Ae. variabilis, thereby confirming the species independence of Ae. kotschyi and Ae. variabilis. Accessions k900, k907, k908, and v90 could not with a sufficiently high degree of probability be assigned to one of the species, which possibly was the result of interspecific hybridization. Analysis of the species diversity using different molecular markers made it possible to identify the accessions that were notably different from other accessions of its species.  相似文献   

17.
Genetic variation and relationships among 37 cultivars of Ziziphus mauritiana (Lamk.) native of India were analyzed using start codon targeted (SCoT), inter-simple sequence repeats (ISSR), and ribosomal DNA (rDNA) markers. High level of polymorphism among SCoT (61.6%) and ISSR (61%) primers with higher PIC values ranging from 63.1 to 90.4% of SCoT and 47.3 to 88.8% of ISSR primers was recorded. SCoT and ISSR dendrograms revealed similarity coefficients ranging from 0.80 to 0.92 and 0.79 to 0.96, respectively, and clearly delineated all the cultivars of Z. mauritiana into well-supported distinct clusters. Greater Gst signifies higher amount of differentiation observed over multiple loci among seven Z. mauritiana populations. On the other hand, higher gene flow demonstrating a very high migration rate between Z. mauritiana populations indicated higher rates of transfer of alleles or genes from one population to another. The genetic diversity of population 1 (Rajasthan) was the richest among all the seven populations. The largest genetic distance was measured between Maharashtra and West Bengal and the least between Rajasthan and Punjab cultivars. Most of the genetic diversity exists within population rather than among populations. Substantial variation in the ITS-1 region signifies its phylogenetic utility specifically in assessing genetic diversity in Z. mauritiana. The clustering patterns using three molecular marker systems vis-à-vis place of origin exhibited no consistency in grouping of Z. mauritiana cultivars as cultivars from the same place of origin were genetically cataloged into different SCoT, ISSR, and ITS phylogram clusters indicating wide genetic diversity and distribution across agro-climatic zones validating the robustness of marker systems tested.  相似文献   

18.
Rice is one of the most important food crops in the world. Genetic diversity is essential for cultivar improvement programs. We compared genetic diversity derived from insertion–deletion (in–del) or base substitutions by amplified fragment length polymorphism (AFLP), from transposon transposition mutations by transposon display (TD), and from cytosine methylation by methylation-sensitive amplified polymorphism (MSAP) in japonica, indica, and Tongil type varieties of Oryza sativa L. Polymorphic profiles from the three marker systems allowed us to clearly distinguish the three types of varieties. The indica type varieties showed the highest genetic diversity followed by the Tongil and japonica type varieties. Of the three marker systems, TD produced the highest marker indices, and AFLP and MSAP produced similar marker indices. Pair-wise comparisons of the three marker systems showed that the correlation between the two genetic markers systems (AFLP and TD, r = 0.959) was higher than the correlations between the genetic and epigenetic marker systems (AFLP and MSAP, r = 0.52; TD and MSAP, r = 0.505). Both genetic marker systems had similar levels of gene differentiation (G ST ) and gene flow (N m ), which differed in the epigenetic marker system. Although the G ST of the epigenetic marker system was lower than the genetic marker systems, the N m of the epigenetic marker system was higher than in the genetic marker systems, indicating that epigenetic variations have a greater influence than genetic variations among the O. sativa L. types.  相似文献   

19.
Three polymerase chain reaction (PCR) techniques were compared to analyse the genetic diversity of Clinacanthus nutans eight populations in the northern region of Peninsular Malaysia. The PCR techniques were random amplified polymorphic deoxyribonucleic acids (RAPD), inter-simple sequence repeats (ISSR) and random amplified microsatellite polymorphisms (RAMP). Leaf genomic DNA was PCR amplified using 17 RAPD, 8 ISSR and 136 RAMP primers . However, only 10 RAPD primers, 5 ISSR primers and 37 RAMP primers produced reproducible bands. The results were evaluated for polymorphic information content (PIC), marker index (MI) and resolving power (RP). The RAMP marker was the most useful marker compared to RAPD and ISSR markers because it showed the highest average value of PIC (0.25), MI (11.36) and RP (2.86). The genetic diversity showed a high percentage of polymorphism at the species level compared to the population level. Furthermore, analysis of molecular variance revealed that the genetic diversity was higher within populations, as compared to among populations of C. nutans. From the results, the RAMP technique was recommended for the analysis of genetic diversity of C. nutans.  相似文献   

20.
Inter simple sequence repeat (ISSR) and simple sequence repeat (SSR) markers were used to assess the genetic diversity of 36 pineapple accessions that were introduced from 10 countries/regions. Thirteen ISSR primers amplified 96 bands, of which 91 (93.65%) were polymorphic, whereas 20 SSR primers amplified 73 bands, of which 70 (96.50%) were polymorphic. Nei’s gene diversity (h = 0.28), Shannon’s information index (I = 0.43), and polymorphism information content (PIC = 0.29) generated using the SSR primers were higher than that with ISSR primers (h =  0.23, I = 0.37, PIC = 0.24), thereby suggesting that the SSR system is more efficient than the ISSR system in assessing genetic diversity in various pineapple accessions. Mean genetic similarities were 0.74, 0.61, and 0.69, as determined using ISSR, SSR, and combined ISSR/SSR, respectively. These results suggest that the genetic diversity among pineapple accessions is very high. We clustered the 36 pineapple accessions into three or five groups on the basis of the phylogenetic trees constructed based on the results of ISSR, SSR, and combined ISSR/SSR analyses using the unweighted pair-group with arithmetic averaging (UPGMA) method. The results of principal components analysis (PCA) also supported the UPGMA clustering. These results will be useful not only for the scientific conservation and management of pineapple germplasm but also for the improvement of the current pineapple breeding strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号