首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sad pine is one of the most prominent pine species in Mexico due to its conspicuous pendulous foliage and extreme habitat. However, scientific studies of the species are scarce, and genetic information on sad pine populations is lacking. This endemic tree species occurs naturally on the Sierra Madre Occidental where it covers a total area of about 1,600,000 ha. It typically grows with several species of Quercus and Pinus or in pure stands in uneven-aged forests. Pinus lumholtzii is naturally spatially fragmented, and genetic research on seed and pollen dispersal patterns and spatial genetic structure (SGS)—and the possible implications of these in terms of evolution, conservation and breeding management—is particularly important. Given the fragmented occurrence of the preferred soil type, the goal of this research was to use amplified fragment length polymorphism (AFLP) markers to identify potential differences in spatial genetic structure within and between five P. lumholtzii seed stands at fine and large scales. At the fine scale, we almost always observed non-significant autocorrelation, suggesting that the genetic variants of P. lumholtzii are randomly distributed in space within each sampled seed stand. At the larger scale, our findings provide strong support for the theory of isolation by distance that predicts the expected pattern of SGS at drift–dispersal equilibrium. We recommend a network of P. lumholtzii seed stands of maximum distances of 100 km among stands to prevent greater loss of local genetic variants and use the seeds for reforestations in a radius of maximal 50 km from their proveniences.  相似文献   

2.
This study examines the levels of gene flow, the distance and the patterns of pollen and seed dispersal, the intra-population spatial genetic structure (SGS) and the effective population size of a spatially isolated Myracrodruon urundeuva population using five microsatellite loci. The study was carried out in the Paulo de Faria Ecological Station, São Paulo State, Brazil and included the sampling and mapping of 467 adult-trees and 149 juveniles. Open-pollinated seeds (514) from 29 seed-trees were also sampled and genotyped. Significant SGS was detected in both adult (S p  = 0.0269) and juveniles trees (S p  = 0.0246), indicating short-distance seed dispersal. Using maternity analysis, all juveniles had the mother-tree assigned within the stand. A father-tree within the stand was also assigned for 97.3% of the juveniles and 98.4% of offspring. The average pollen dispersal distance measured in juveniles \( \left( {\hat{\delta } = 1 3 8\pm 1 6 9 {\text{ m}},{\text{ mean}} \pm {\text{SD}}} \right) \) and offspring \( \left( {\hat{\delta } = 2 5 2\pm 20 4 {\text{ m}}} \right) \) were higher than the average seed dispersal distance measured in juveniles \( \left( {\hat{\delta } = 1 2 4\pm 1 50{\text{ m}}} \right) \). About 70% of the pollen from juveniles and 51% from offspring traveled less than 200 m and, 72% of the seeds traveled less than 50 m. The effective population size of the studied sample indicates that the 467 adult-trees and 145 juveniles correspond respectively to 335 and 63 individuals that are neither inbred nor relatives. The results are discussed in relation to their impact on seed collection practices and genetic conservation.  相似文献   

3.
Pentadesma butyracea Sabine, a rain forest food tree species, plays a vital role in the socio-economic livelihood of some West African rural communities due to its various products. However, its scattered populations are threatened in Benin. Defining appropriate conservation strategies requires a good knowledge of mating patterns and their consequences for population genetics. The outcrossing rate, levels of correlated paternity and fine-scale spatial genetic structure of adults and maternal sibships were estimated for one small population and three large populations in Benin using microsatellite markers. Similar outcrossing rates (88–95%) were found in all populations, showing that P. butyracea is mainly an outbreeding species. We found no evidence of inbreeding depression from a decay of inbreeding with age. The spatial genetic structure within the large populations (Sp statistic?=?0.003–0.038) was consistent with isolation-by-distance expectations, showing that gene dispersal is spatially limited. Limited pollen dispersal is highlighted by the decay of the degree of correlated paternity between sibships with spatial distance. The mean pollen dispersal distance was estimated between 50 m and 450 m, but up to 21% pollen may migrate from external sources. The smallest population displayed slightly higher correlated paternity than the large populations (r p ?=?0.37 vs. r p ?=?0.17–0.30). In conclusion, our results suggest that small populations may show a reduction in sire numbers in seed, while the fragmented populations, large and small, are connected through gene flow. There is little inbreeding and no evidence of inbreeding depression.  相似文献   

4.
The seed dispersal patterns of bird-dispersed trees often show substantial seasonal and annual variation due to temporal changes in frugivorous bird and bird-dispersed fruit distributions. Elucidating such variation and how it affects plant regeneration is important for understanding the evolution and seed dispersal maintenance strategies of these plants. In this study, we investigated the seed dispersal quantity and distance of a bird-dispersed plant, Swida controversa, for 2 years and detected large seasonal variations in dispersal pattern. Early in the fruiting season, short seed dispersal distance and large amounts of fruit consumption by birds (seed dispersal quantity) were observed. In contrast, late in the fruiting season, a long seed dispersal distance and small seed dispersal quantity were observed. This relationship between seed dispersal distance and quantity may help to maintain constant seed dispersal effectiveness during the long S. controversa fruiting season. Annual variation was also detected for both seed dispersal quantity and distance. More effective seed dispersal was achieved in the masting year, because both seed dispersal quantity and distance were greater than that in the non-masting year. These seed dispersal dynamics may contribute to the evolution and maintenance of S. controversa masting behavior. Thus, we identified substantial temporal variation on both seasonal and annual scales in the seed dispersal pattern of a bird-dispersed plant. The temporal variation in seed dispersal pattern revealed in this study probably plays a substantial role in the life history and population dynamics of S. controversa.  相似文献   

5.
We asked the following questions regarding gap dynamics and regeneration strategies in Juniperus-Laurus forests: How important are gaps for the maintenance of tree diversity? What are the regeneration strategies of the tree species? Thirty canopy openings were randomly selected in the forest and in each the expanded gap area was delimited. Inside expanded gaps the distinction was made between gap and transition zone. In the 30 expanded gaps a plot, enclosing the gap and transition zone, was placed. In order to evaluate the differences in regeneration and size structure of tree species between forest and expanded gaps, 30 control plots were also delimited in the forest, near each expanded gap. In the 60 plots the number of seedlings, saplings, basal sprouts and adults of tree species were registered. Canopy height and width of adult individuals were also measured. The areas of the 30 gaps and expanded gaps were measured and the gap-maker identified. Juniperus-Laurus forests have a gap dynamic associated with small scale disturbances that cause the death, on average, of two trees, mainly of Juniperus brevifolia. Gap and expanded gap average dimensions are 8 and 25 m2, respectively. Gaps are of major importance for the maintenance of tree diversity since they are fundamental for the regeneration of all species, with the exception of Ilex azorica. Three types of regeneration behaviour and five regeneration strategies were identified: (1) Juniperus brevifolia and Erica azorica are pioneer species that regenerate in gaps from seedlings recruited after gap formation. However, Juniperus brevifolia is a pioneer persistent species capable of maintaining it self in the forest due to a high longevity and biomass; (2) Laurus azorica and Frangula azorica are primary species that regenerate in gaps from seedlings or saplings recruited before gap formation but Laurus azorica is able to maintain it self in the forest through asexual regeneration thus being considered a primary persistent species; (3) Ilex azorica is a mature species that regenerates in the forest.  相似文献   

6.
Habitat loss and landscape degradation affect animal-mediated seed dispersal, often collapsing the regeneration of endangered plant species and habitats in anthropogenic landscapes. We first compared the role of red fox and other vertebrates as seed disperser for the keystone scrub Ziziphus lotus. Because it turned out that foxes are the major Z. lotus dispersers, we investigated how fox activity and dispersal service relate to habitat loss and landscape alteration in the threatened Ziziphus semiarid scrublands, a priority habitat for conservation in Europe. Considering its opportunistic behavior, we hypothesized that landscape features should affect moderately fox abundance, while influence in a large extent its dispersal service. Accordingly, we predicted that a substantial decline in Ziziphus fruit consumption rather than in disperser activity would be responsible for seed dispersal collapse under severe habitat loss. We evaluated fox activity and dispersal service in 17 populations of Z. lotus spread through the range of its habitat in Spain and found within landscapes with different land-use intensity. We certified the collapse of the dispersal service by fox under severe habitat loss and confirmed that fox activity was less affected by habitat loss or landscape alteration than consumption of Ziziphus fruits. Consequently, the decline of consumption of Ziziphus fruits under severe habitat loss triggers the collapse of its seed dispersal. Results suggest that without increase of the remnant areas other managements may not suffice to achieve seed dispersal and habitat restoring. Dispersal service and natural regeneration in many Ziziphus habitat remnants will possibly cease in the future if habitat loss continues.  相似文献   

7.
Conventional wisdom states Cannabis sativa originated in Asia and its dispersal to Europe depended upon human transport. Various Neolithic or Bronze age groups have been named as pioneer cultivators. These theses were tested by examining fossil pollen studies (FPSs), obtained from the European Pollen Database. Many FPSs report Cannabis or Humulus (C/H) with collective names (e.g. Cannabis/Humulus or Cannabaceae). To dissect these aggregate data, we used ecological proxies to differentiate C/H pollen, as follows: unknown C/H pollen that appeared in a pollen assemblage suggestive of steppe (Poaceae, Artemisia, Chenopodiaceae) we interpreted as wild-type Cannabis. C/H pollen in a mesophytic forest assemblage (Alnus, Salix, Populus) we interpreted as Humulus. C/H pollen curves that upsurged and appeared de novo alongside crop pollen grains we interpreted as cultivated hemp. FPSs were mapped and compared to the territories of archaeological cultures. We analysed 479 FPSs from the Holocene/Late Glacial, plus 36 FPSs from older strata. The results showed C/H pollen consistent with wild-type C. sativa in steppe and dry tundra landscapes throughout Europe during the early Holocene, Late Glacial, and previous glaciations. During the warm and wet Holocene Climactic Optimum, forests replaced steppe, and Humulus dominated. Cannabis retreated to steppe refugia. C/H pollen consistent with cultivated hemp first appeared in the Pontic-Caspian steppe refugium. GIS mapping linked cultivation with the Copper age Varna/Gumelni?a culture, and the Bronze age Yamnaya and Terramara cultures. An Iron age steppe culture, the Scythians, likely introduced hemp cultivation to Celtic and Proto-Slavic cultures.  相似文献   

8.
Macrodasyceras hirsutum Kamijo is the seed parasitoid wasp of the bird-dispersed, dioecious tree, Ilex integra Thunb. The wasp reduces the level of dispersal mutualism between the Ilex tree and its frugivorous birds by manipulating the color of mature berries. The female trees do not blossom every year and sometimes change sex. Thus, the reproduction biology of I. integra affects the population size and structure of M. hirsutum in a forest and consequently influences the seed dispersal mutualism between the tree and birds, because of limited ability of adult locomotion. To investigate the wasp population structure with reference to the dispersal mutualism between trees and birds, we isolated 14 microsatellite loci of M. hirsutum wasps. Every locus was polymorphic among 20 females, with 3–13 alleles per locus, without linkage disequilibrium. The observed and expected heterozygosities ranged from 0.100 to 0.900 and 0.099 to 0.818, respectively, indicating their utility in molecular analyses of the wasp population.  相似文献   

9.
In most plants, the contributions of pollen and seed flow to their genetic structures are generally difficult to disentangle. For typical wind-pollinated and wind-dispersed species Engelhardia roxburghiana in a 20-ha natural forest plot in lower subtropic China, because the prevailing wind directions change during its pollen release and seed dispersal seasons, we could compare its genetic structures in different directions, which could result primarily from pollen or seed flow. Furthermore, because the plot has undergone from an open to a closed canopy stage historically, we also examined forest canopy effects on gene flow in different generations and different directions. Using 522 E. roxburghiana individuals mapped in the plot, our results revealed that greater pollen flow led to biased gene flow in the pollen dispersal-predominant direction (pollen direction), while greater seed flow generated less spatial genetic structure in the seed dispersal-predominant direction (seed direction). The results predicted from generalized additive models indicated that canopy closure enhanced resistance to gene flow from the old generation to the new generation. Analyses by landscape genetic models for the new generation revealed that gene flow associated with pollen direction was more strongly affected by canopy than with seed direction. Our study is new by proposing an alternative way to separate effects of the pollen and seed flow on spatial variation patterns in E. roxburghiana. To our knowledge, our study is also the first attempt to use landscape genetic models to represent canopy effects for different dispersal vectors in spatial scales only up to a few hundred meters.  相似文献   

10.
Annona crassiflora (Annonaceae) is a protogynous beetle-pollinated savannah tree species, widely distributed in the savannahs of the Cerrado biome. Studies on the mating system and pollen dispersal of protogynous species are very scarce. Here, we used six microsatellite loci to assess the mating system and pollen dispersal of A. crassiflora in a savannah remnant in Central Brazil. We mapped and sampled leaves of 112 adult trees and collected 74 fruits from 20 mother trees (1–4 fruits per plant) to obtain the seeds used (460) for mating system and parentage analyses. Annona crassiflora has predominantly allogamous mating systems, with a high multilocus outcrossing rate (tm?=?0.974, SE?=?0.011) that did not differ among mother trees (F?=?1.32, p?=?0.165). However, tmts was variable among seed trees, indicating that some seeds were produced by mating among relatives. Our results also showed multiple paternity within fruits. Multilocus correlation of outcrossed paternity was high (rp?=?0.302, SE?=?0.045), indicating that for each mother tree, the probability that the same pollen donor sired two random sibs was 30.2%, and the mean number of pollen donors per mother tree was high (6.3). We detected a maximum pollen dispersal distance of 360.7 m and an average of 124.3 m (SD?=?80 m), but most pollination events (73%) occurred at shorter distances (<?160 m), indicating short-distance pollen dispersal, most likely due to the pollinator behaviour.  相似文献   

11.
Carolina hemlock (Tsuga caroliniana Engelm.) is a rare conifer species that exists in small, isolated populations within a limited area of the Southern Appalachian Mountains of the USA. As such, it represents an opportunity to assess whether population size and isolation can affect the genetic diversity and differentiation of a species capable of long-distance gene flow via wind-dispersed pollen and seed. This information is particularly important in a gene conservation context, given that Carolina hemlock is experiencing mortality throughout its range as a result of infestation by hemlock wooly adelgid (Adelges tsugae Annand), an exotic insect. In this study, 439 Carolina hemlock trees from 29 areas (analyzed as populations) were sampled, representing an extensive range-wide sampling of the species. Data from 12 polymorphic nuclear microsatellite loci were collected and analyzed for these samples. The results show that populations of Carolina hemlock are extremely inbred (F IS  = 0.713) and surprisingly highly differentiated from each other (F ST  = 0.473) with little gene flow (Nm = 0.740). Additionally, most populations contained at least one unique allele. This level of differentiation is unprecedented for a North American conifer species. Numerous genetic clusters were inferred using two different clustering approaches. The results clearly demonstrate that, existing as a limited number of small and isolated populations, Carolina hemlock has insufficient gene flow to avoid widespread genetic drift and inbreeding, despite having the capacity to disperse pollen and seed relatively long distances by wind. These results have important conservation implications for this imperiled species.  相似文献   

12.
An important feature of seed dispersal mutualism is the differentiation of dispersal-related seed traits (dispersal syndrome), which potentially contribute to partitioning of both seed dispersers and regeneration sites among sympatric plants. Yet, the selective factors underlying the diversity in dispersal syndromes are largely unknown. The differential requirements for seed dispersal distances are often proposed as a main factor in plant adaptations to disperser animals. Focusing on two sympatric ant-dispersed sedges Carex lanceolata and Carex tristachya (Cyperaceae), we tested the association of the adaptation to different dispersers with requirements for seed dispersal distances. We found that C. lanceolata was more frequently dispersed by the large ant Formica japonica (which had relatively long dispersal distances compared with other smaller ants) than by C. tristachya, and this was caused by the higher seed attractiveness of C. lanceolata to F. japonica. Pot experiments manipulating adult-to-seedling distances showed that isolation from conspecific adults only benefited C. lanceolata seedlings, and C. tristachya seedlings were not affected. These results support the importance of differential requirements for seed dispersal distances as a factor underlying the diversity in dispersal syndromes among animal-dispersed plants.  相似文献   

13.
14.
The fine-scale genetic structure and how it varies between generations depends on the spatial scale of gene dispersal and other fundamental aspects of species’ biology, such as the mating system. Such knowledge is crucial for the design of genetic conservation strategies. This is particularly relevant for species that are increasingly fragmented such as Boswellia papyrifera. This species occurs in dry tropical forests from Ethiopia, Eritrea and Sudan and is an important source of frankincense, a highly valued aromatic resin obtained from the bark of the tree. This study assessed the genetic diversity and fine-scale spatial genetic structure (FSGS) of two cohorts (adults and seedlings) from two populations (Guba-Arenja and Kurmuk) in Western Ethiopia and inferred intra-population gene dispersal in the species, using microsatellite markers. The expected heterozygosity (H E) was 0.664–0.724. The spatial analyses based on kinship coefficient (F ij) revealed a significant positive genetic correlation up to a distance of 130 m. Spatial genetic structure was relatively weak (Sp = 0.002–0.014) indicating that gene dispersal is extensive within the populations. Based on the FSGS patterns found, we estimate indirectly gene dispersal distances of 103 and 124 m for the two populations studied. The high heterozygosity, the low fixation index and the low Sp values found in this study are consistent with outcrossing as the (predominant) mating system in B. papyrifera. We suggest that seed collection for ex situ conservation and reforestation programmes of B. papyrifera should use trees separated by distances of at least 100 m but preferably 150 m to limit genetic relatedness among seeds from different trees.  相似文献   

15.
Primates play a fundamental role as seed dispersers, particularly in tropical rainforests. Because defaunation and fragmentation are leading several primate species to local extinction, it is fundamental to understand the role of primates as effective seed dispersers. Here we present a systematic review of studies of seed dispersal by primates in a biodiversity hotspot, the Atlantic Forest of South America, to 1) highlight gaps in our knowledge, 2) determine species richness and proportion of seed species dispersed, and 3) test the relationship between primate body size and the size of dispersed species. Our review found 79 studies of the diet of six ecospecies (Callithrix, Leontopithecus, Callicebus, Sapajus, Alouatta, Brachyteles) but only 20 of these report information on seed dispersal, and none of these are on Callithrix or Callicebus. We found a strong bias in the distribution of species and regions, with most of the studies concentrated in southeastern Brazil. All ecospecies dispersed a large proportion of the seed species they handled (72.1–93.6%). Brachyteles dispersed the highest diversity of plants (N = 73), followed by Sapajus (N = 66), Leontopithecus (N = 49), and Alouatta (N = 26). Although we found no significant relationship between primate body size and the size of seeds dispersed, Brachyteles disperse a higher diversity of large-seeded species than smaller-bodied primates. These results suggest that the local extinction of large primate species may lead to dramatic changes in the plant community, as many large-seeded plants are inaccessible to smaller arboreal frugivores. We propose guidelines for future research on primate seed dispersal to enable the evaluation of seed dispersal effectiveness and to improve our understanding of the fundamental role of primates in this key ecosystem process.  相似文献   

16.
The tpd1 (from tobacco pollen development 1) insertion mutant of tobacco (Nicotiana tabacum L., cv. Samsun) with extended flowering period was investigated in detail in the course of plant development, and the inheritance of the mutant phenotype was established. The wild-type and mutant plants did not differ in basic developmental indices until the floral transition; later they diverged in the characteristics of male reproductive organs, particularly in anther development and pollen maturation. The pollen of tpd1 plants was underdeveloped and sterile, resulting in a characteristic seedless phenotype with extended flowering period. When mutant flowers were pollinated with wild-type pollen, the tpd1 phenotype was maintained in at least two seed generations, indicating that this trait was heritable. The tpd1 phenotype was closely linked with kanamycin resistance; it follows that the developmental anomalies observed in our experiments immediately depended on the vector DNA insert. Our data presume that tpd1 is a rare dominant monogenic mutation with a narrowly directed physiological manifestation. A model is presented to describe the effect of TPD1. The tpd1 mutant would help identify and clone the new TPD1 gene crucial for viable pollen development.  相似文献   

17.
Primary seed dispersal by primates (phase I) followed by secondary seed dispersal by dung beetles (phase II) is a common diplochorous system in tropical forests. In such systems, phase I affects the occurrence/outcome of phase II, triggering cascading effects along the chain of plant recruitment with direct consequences on seed dispersal effectiveness. However, we know very little regarding whether seed dispersal effectiveness is increased or decreased by phase II and whether this effect is consistent among habitats. Using a primate–dung beetle diplochorous system, we determined 1) the characteristics of phase I that may affect phase II; 2) the pathways relating biotic/abiotic factors to seed/seedling survival; and 3) if the direction and/or magnitude of phase II effects on seed dispersal effectiveness depend on phase I characteristics. We marked and characterized the dispersal characteristics of 981 seeds dispersed by two tamarin species (Saguinus mystax, Leontocebus nigrifrons) and checked the fate of 503 of them for ≥1 year. Seeds dispersed by L. nigrifrons and seeds surrounded by larger amounts of dung were more likely to be buried by dung beetles. Burial increased seed survival in secondary forest while low seed density increased germination in both habitats. Seed burial increased seed dispersal effectiveness more strongly in secondary (+52.2%) vs. in primary forest (+5.0%), in L. nigrifrons (+12.9%) vs. in S. mystax (+7.9%) feces, and in larger fecal portions (+22.1%) vs. in small–medium ones (+7.3–7.4%). In conclusion, two seed dispersers are more effective than one only in secondary forest, and the magnitude of increase of seed dispersal effectiveness with phase II depends on how the seeds are primarily dispersed.  相似文献   

18.
Seed dispersal mutualisms are essential to ensure the survival of diverse plant species and communities worldwide. Here, we investigated whether the invasive Argentine ant can replace native ants by fulfilling their functional role in the seed dispersal of the rare and threatened endemic myrmecochorous plant, Anchusa crispa, in Corsica (France). Our study addressed the potential of Linepithema humile to disperse elaiosome-bearing seeds of A. crispa, examining L. humile’s effects on (1) the composition of communities of ants removing seeds, (2) the number of seed removals, (3) seed preference, (4) the distance of seed dispersion, and (5) seed germination. We caught seven native species at the control site, but only the Argentine ant at invaded sites. L humile removed A. crispa seeds in greater numbers than did native ants, respectively 66 and 23%, probably due to their higher worker density. The invader was similar to native ants with respect to distance of seed transport. Finally, rates of seed germination were not significantly different between seeds previously in contact with either Argentine ants or not. Taken all together, these results suggest that the Argentine ant is unlikely to pose a threat to A. crispa population. These results have important implications for the management of this rare and threatened endemic plant and provide an example of non-negative interactions between invasive and native species.  相似文献   

19.
Measurements of the pollen size in 5 species of Taraxacum sect. Palustria at three levels of ploidy: 2n = 3x = 24 (T. paucilobum), 2n = 4x = 32 (T. vindobonense, T. trilobifolium), 2n = 5x = 40 (T. mendax) and one taxon of unknown number of chromosomes 2n = ? (T. portentosum) are presented in this paper. Obtained results indicate a lack of distinct positive correlation between the pollen size and ploidy in the studied group of plants. Distinct relationship was, however, found between ploidy and the range of pollen size and shape variability. Most variable were the pollen grains of triploid T. paucilobum and the least — those in pentaploid T. mendax. Ranges of pollen variability in tetraploid T. trilobifolium and T. vindobonense and in T. portentosum of unknown number of chromosomes showed intermediate values.  相似文献   

20.
The dispersal and germination unit of some Brassicaceae species is the fruit, and we hypothesized that it could affect germination phenology and promote formation of a soil seed bank. We determined the effects of the indehiscent pericarp on germination and longevity of buried seeds of five Brassicaceae species native to cold deserts of central Asia. Germination phenology (seedling emergence) was monitored for intact dispersal units and isolated seeds of Chorispora sibirica, Goldbachia laevigata, Spirorrhynchus sabulosus, Tauscheria lasiocarpa (annuals), and Sterigmostemum fuhaiense (perennial) at natural temperatures in watered and non-watered (natural precipitation) soil. Intact dispersal units and isolated seeds were buried under natural conditions and exhumed at regular intervals for 35 months to monitor germination, viability and moisture content of isolated seeds, seeds in dispersal units, and seeds removed from dispersal units after burial. Isolated seeds of Goldbachia, Spirorrhynchus, and Tauscheria germinated only the first autumn and those of Chorispora and Sterigmostemum the first autumn and first spring, with higher germination percentages in all species in watered than in non-watered soil. A high percentage of seeds in buried dispersal units of Chorispora, Goldbachia, and Sterigmostemum was viable after 35 months, and seeds exhibited a 6-month dormancy cycle, being non-dormant only in autumn and spring. Seeds in buried dispersal units of Spirorrhynchus and Tauscheria germinated when exhumed in the first spring, but all non-germinated seeds were dead after 1 year. Thus, the presence of the pericarp allows Chorispora, Goldbachia, and Sterigmostemum to form a persistent seed bank but not Spirorrhynchus and Tauscheria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号