首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pollination-constant, non-astringent (PCNA) type of persimmon is ideal for production because its fruits lose astringency at harvest regardless of seed formation. The PCNA trait in Japanese persimmons is controlled by a single locus, AST, and is recessive to the non-PCNA trait. Because cultivated persimmon is hexaploid, only the homozygous genotype with six recessive alleles is PCNA. A region tightly linked to AST has been used as a DNA marker for breeding. Three non-PCNA (A) alleles have been reported. Here, we show that the region linked to AST is highly polymorphic and includes microsatellites. By analyzing the size of PCR-amplified fragments, we distinguished 12 different A alleles from 14 non-PCNA cultivars and a Chinese PCNA ‘Luotian-tianshi.’ Then, using A fragment size, we assessed A allele inheritance in six non-PCNA × PCNA populations by analyzing segregation of each A allele in a population and segregation of progeny genotypes. By using A allele segregation analysis, we were able to estimate the copy number of each A allele in five non-PCNA parents but not in ‘Amahyakume.’ By analyzing progeny genotype segregation, we were able to estimate the ‘Amahyakume’ genotype. Our approach can be used not only for the selection of PCNA individuals in populations, but also for estimation of the copy number of A alleles in a possible non-PCNA parent. This would enable us to select non-PCNA parents with fewer A alleles, which would segregate more PCNA individuals in crosses with PCNA cultivars.  相似文献   

2.
Chinese pollination-constant and non-astringent persimmon (C-PCNA) has important application values in the genetic improvement of PCNA for its trait of natural deastringency controlled by a single dominant gene. However, the key genes and the regulatory networks are still not fully understood. The process of C-PCNA natural deastringency may be associated with the acetaldehyde-mediated coagulation of soluble tannins, but the functions of ALDH2 genes related to the metabolism of acetaldehyde are not clear. In this work, three types of persimmon cultivars, ‘Eshi 1’ and ‘Luotian Tianshi’ (C-PCNA type), ‘Youhou’ (J-PCNA type), and ‘Mopanshi’ (non-PCNA type), were sampled. Two members of ALDH2 family genes, DkALDH2a and DkALDH2b, were isolated from ‘Eshi 1’ persimmon fruit. Gene expression patterns indicated that they may be involved in “coagulation effect”, which leads to natural deastringency in C-PCNA persimmon fruit. Transient expression in ‘Eshi 1’ leaves further demonstrated that their expression can reduce the consumption of soluble tannins and inhibit the astringency removal process. Therefore, DkALDH2a and DkALDH2b are negatively correlated with natural deastringency in C-PCNA persimmon.  相似文献   

3.
Avenin-like storage proteins influence the rheological properties and processing quality in common wheat, and the discovery of new alleles will benefit wheat quality improvement. In this study, 13 avenin-like b alleles (TaALPb7D-A–M) were discovered in 108 Aegilops tauschii Coss. accessions. Ten alleles were reported for the first time, while the remaining three alleles were the same as alleles in other species. A total of 15 nucleotide changes were detected in the 13 alleles, resulting in only 11 amino acid changes because of synonymous mutations. Alleles TaALPb7D-E, TaALPb7D-G, and TaALPb7D-J encoded the same protein. These polymorphic sites existed in the N-terminus, Repetitive region (Left), Repetitive region (Right) and C-terminus domains, with no polymorphisms in the signal peptide sequence nor in those encoding the 18 conserved cysteine residues. Phylogenetic analysis divided the TaALPb7Ds into four clades. The Ae. tauschii alleles were distributed in all four clades, while the alleles derived from common wheat, TaALPb7D-G and TaALPb7D-C, belonged to clade III and IV, respectively. Alleles TaALPb7D-G and TaALPb7D-C were the most widely distributed, being present in nine and six countries, respectively. Iran and Turkey exhibited the highest genetic diversity with respect to TaALPb7D alleles, accessions from these countries carrying seven and six alleles, respectively, which implied that these countries were the centers of origin of the avenin-like b gene. The new alleles discovered and the phylogenetic analysis of avenin-like b genes will provide breeding materials and a theoretical basis for wheat quality improvement.  相似文献   

4.

Background

Vernalization genes VRN1 play a major role in the transition from vegetative to reproductive growth in wheat. In di-, tetra- and hexaploid wheats the presence of a dominant allele of at least one VRN1 gene homologue (Vrn-A1,?Vrn-B1, Vrn-G1 or Vrn-D1) determines the spring growth habit. Allelic variation between the Vrn-1 and vrn-1 alleles relies on mutations in the promoter region or the first intron. The origin and variability of the dominant VRN1 alleles, determining the spring growth habit in tetraploid wheat species have been poorly studied.

Results

Here we analyzed the growth habit of 228 tetraploid wheat species accessions and 25 % of them were spring type. We analyzed the promoter and first intron regions of VRN1 genes in 57 spring accessions of tetraploid wheats. The spring growth habit of most studied spring accessions was determined by previously identified dominant alleles of VRN1 genes. Genetic experiments proof the dominant inheritance of Vrn-A1d allele which was widely distributed across the accessions of Triticum dicoccoides. Two novel alleles were discovered and designated as Vrn-A1b.7 and Vrn-B1dic. Vrn-A1b.7 had deletions of 20 bp located 137 bp upstream of the start codon and mutations within the VRN-box when compared to the recessive allele of vrn-A1. So far the Vrn-A1d allele was identified only in spring accessions of the T. dicoccoides and T. turgidum species. Vrn-B1dic was identified in T. dicoccoides IG46225 and had 11 % sequence dissimilarity in comparison to the promoter of vrn-B1. The presence of Vrn-A1b.7 and Vrn-B1dic alleles is a predicted cause of the spring growth habit of studied accessions of tetraploid species. Three spring accessions T. aethiopicum K-19059, T. turanicum K-31693 and T. turgidum cv. Blancal possess recessive alleles of both VRN-A1 and VRN-B1 genes. Further investigations are required to determine the source of spring growth habit of these accessions.

Conclusions

New allelic variants of the VRN-A1 and VRN-B1 genes were identified in spring accessions of tetraploid wheats. The origin and evolution of VRN-A1 alleles in di- and tetraploid wheat species was discussed.
  相似文献   

5.
Pollination constant non-astringency (PCNA)-type persimmons are the most desirable cultivar because the fruit loses astringency naturally and does not require any treatments for edibility. The mechanism of natural astringency loss in Chinese PCNA (C-PCNA)-type persimmon is probably related to the coagulation of soluble tannins into insoluble tannins, which is quite different from that in the Japanese PCNA (J-PCNA) type. In this work, three types of persimmon cultivars were sampled: ‘Luotian-tianshi’ (C-PCNA), ‘Maekawa-jirou’ (J-PCNA), and ‘Mopanshi’ (pollination constant astringent (PCA)) were sampled. Three DkADH and four DkPDC genes were isolated from C-PCNA plants. Three candidate genes for soluble tannins coagulation identified in C-PCNA fruit (DkADH1, DkPDC1, and DkPDC2) were characterized through combined analysis of spatiotemporal expression patterns and tannin and acetaldehyde contents during fruit development. Transient over-expression in persimmon leaves showed that DkADH1 and DkPDC2 led to a significant decrease in the levels of soluble tannins in infiltrated leaves. These results indicated that DkADH and DkPDC genes should be considered key genes for natural astringency loss in C-PCNA types.  相似文献   

6.
Glutelin is the most significant seed storage protein and is regarded as an important nutrient quality trait in rice. Research on the genetic basis of the glutelin content distinction in rice will provide more choices for the diets of people with kidney disease and diabetes. The GluA and GluB1 genes play important roles in the process of glutelin synthesis. In this study, 128 Japonica rice accessions with wide geographic distributions were collected to construct the association panel. Among all the 128 accessions, both sequences of the GluA and GluB1 genes were obtained, and nucleotide polymorphisms were detected. A total of 46 SNPs and eight InDels, six SNPs and four InDels were found in the GluA and GluB1 gene sequences, respectively. Eight haplotypes and two haplotypes were classified based on the SNPs in the coding region of the GluA and GluB1 genes, respectively. Moreover, the association of the polymorphic sites in the two genes with glutelin content in the tested population was estimated. The results revealed that five SNPs in the GluA gene, one SNP and one InDel in the GluB1 gene were associated with glutelin content at a significant level (P < 0.01). Corresponding markers were also designed to check the alleles of GluA and GluB1 genes. These results suggested that polymorphisms in the GluA and GluB1 genes in rice could be utilized in molecular marker-assisted selection to improve the nutrient quality of rice breeding programmes.  相似文献   

7.
Polyploid Prunus spinosa (2n = 4×) and P. insititia (2n = 6×) represent enormous genetic potential in Central Europe, which can be exploited in breeding programmes. In Hungary, 17 cultivar candidates were selected from wild-growing populations including 10 P. spinosa, 4 P. insititia and three P. spinosa × P. domestica hybrids (2n = 5×). Their taxonomic classification was based on their phenotypic characteristics. Six simple sequence repeats (SSRs) and the multiallelic S-locus genotyping were used to characterize genetic variability and reliable identification of the tested accessions. A total of 98 SSR alleles were identified, which presents 19.5 average allele number per locus, and each of the 17 genotypes could be discriminated based on unique SSR fingerprints. A total of 23 S-RNase alleles were identified. The complete and partial S-genotype was determined for 8 and 9 accessions, respectively. The identification of a cross-incompatible pair of cultivar candidates and several semi-compatible combinations help maximize fruit set in commercial orchards. Our results indicate that the S-allele pools of wild-growing P. spinosa and P. insititia are overlapping in Hungary. A phylogenetic and principal component analysis confirmed the high level of diversity and genetic differentiation present within the analysed genotypes and helped clarify doubtful taxonomic identities. Our data confirm that S-locus genotyping is suitable for diversity studies in polyploid Prunus species. The analysed accessions represent huge genetic potential that can be exploited in commercial cultivation.  相似文献   

8.
The arabidopsis gene LEAFY controls the induction of flowering and maintenance of the floral meristem identity. By comparing the primary structure of LEAFY and its homologs in other Brassicaceae species and beyond this family, we singled out four clusters corresponding to three systematically remote families of angiosperms, Brassicaceae, Solanaceae, and Poaceae, and to gymnosperms. Both structural and functional distinctions of LEAFY homologs from their arabidopsis prototype expanded in the range Brassicaceae—Solanaceae—Poaceae. A LEAFY homolog from B. juncea cloned in our laboratory was used as a hybridization probe to analyze the restriction fragment length polymorphism in six Brassica species comprising diploid (AA, BB, and CC) and allotetraploid (AABB, AACC, and BBCC) genomes. In this way we recognized LEAFY fragments specific of genomes A, B, and C; in contrast, the variations of the length and structure of the LEAFY intron 2 were not genome-specific. LEAFY polymorphism in the Brassica accessions comprising genome B was related to their geographic origin and apparently to the adaptation to day length.  相似文献   

9.
Using gliadins as genetic markers, Triticum spelta L. var. caeruleum accessions were analyzed to identify genetic control of the dark color of glumes. The research material was F2 and BC1 plants from crosses between spelt accessions and white-glumed common wheat varieties. The segregation for glume color fitted the monogenic control of the trait. The electrophoretic analysis of gliadins in grains from the hybrid plants has shown that the Gli-Alj* allele in the T. spelta var. caeruleum accessions is linked to the allele for the dark (black) color of glumes at the Rg-A1 locus.  相似文献   

10.
Three index patients with hyperhomocysteinemia and ocular anomalies were screened for cystathionine beta synthase (CBS) and methylenetetrahydrofolate reductase (MTHFR) polymorphisms. Genotyping of hyperhomocysteinemia associated MTHFR polymorphisms C677T (rs1801133) and A1298C (rs1801131) was done by PCR-restriction fragment length polymorphism. Sanger sequencing was performed for CBS exonic sequences along with consensus splice sites. In the case of MTHFR polymorphisms, all the patients were heterozygous CT for the single nucleotide polymorphism (SNP) C677T and were therefore carriers of the risk allele (T), while the patients were homozygous CC for the risk genotype of the SNP A1298C. CBS sequencing resulted in the identification of two novel mutations, a missense change (c.467T>C; p.Leu156Pro) in exon 7 and an in-frame deletion (c.808_810del; p.Glu270del) in exon 10. In addition, a recurrent missense mutation (c.770C>T; p.Thr257Met) in exon 10 of the gene was also identified. The mutations were present homozygously in the patients and were inherited from the carrier parents. This is the first report from Pakistan where novel as well as recurrent CBS mutations causing hyperhomocysteinemia and lens dislocation in three patients from different families are being reported with the predicted effect of the risk allele of the MTHFR SNP in causing hyperhomocysteinemia.  相似文献   

11.
Verticillium wilt (Verticillium dahliae) is an economically important disease for many high-value crops. The pathogen is difficult to manage due to the long viability of its resting structures, wide host range, and the inability of fungicides to affect the pathogen once in the plant vascular system. In chile pepper (Capsicum annuum), breeding for resistance to Verticillium wilt is especially challenging due to the limited resistance sources. The dominant Ve locus in tomato (Solanum lycopersicum) contains two closely linked and inversely oriented genes, Ve1 and Ve2. Homologs of Ve1 have been characterized in diverse plant species, and interfamily transfer of Ve1 confers race-specific resistance. Queries in the chile pepper WGS database in NCBI with Ve1 and Ve2 sequences identified one open reading frame (ORF) with homology to the tomato Ve genes. Comparison of the candidate CaVe (Capsicum annuum Ve) gene sequences from susceptible and resistant accessions revealed 16 single nucleotide polymorphisms (SNPs) and several haplotypes. A homozygous haplotype was identified for the susceptible accessions and for resistant accessions. We developed a cleaved amplified polymorphic sequence (CAPS) molecular marker within the coding region of CaVe and screened diverse germplasm that has been previously reported as being resistant to Verticillium wilt in other regions. Based on our phenotyping using the New Mexico V. dahliae isolate, the marker could select resistance accessions with 48% accuracy. This molecular marker is a promising tool towards marker-assisted selection for Verticillium wilt resistance and has the potential to improve the efficacy of chile pepper breeding programs, but does not eliminate the need for a bioassay. Furthermore, this work provides a basis for future research in this important pathosystem.  相似文献   

12.
A new deletion allele of the APETALA1 (AP1) gene encoding a type II MADS-box protein with the key role in the initiation of flowering and development of perianth organs has been identified in A. thaliana. The deletion of seven amino acids in the conserved region of the K domain in the ap1-20 mutant considerably delayed flowering and led to a less pronounced abnormality in the corolla development compared to the weak ap1-3 and intermediate ap1-6 alleles. At the same time, a considerable stamen reduction has been revealed in ap1-20 as distinct from ap1-3 and ap1-6 alleles. These data indicate that the K domain of AP1 can be crucial for the initiation of flowering and expression regulation of B-class genes controlling stamen development.  相似文献   

13.

Background

The key gene in genetic system controlling the duration of the vegetative period in cereals is the VRN1 gene, whose product under the influence of low temperature (vernalization) promotes the transition of the apical meristem cells into a competent state for the development of generative tissues of spike. As early genetic studies shown, the dominant alleles of this gene underlie the spring forms of plants that do not require vernalization for this transition. In wheat allopolyploids various combinations of alleles of the VRN1 homoeologous loci (VRN1 homoeoalleles) provide diversity in such important traits as the time to heading, height of plants and yield. Due to genetical mapping of VRN1 loci it became possible to isolate the dominant VRN1 alleles and to study their molecular structure compared with the recessive alleles defining the winter type of plants. Of special interest is the process of divergence of VRN1 loci in the course of evolution from diploid ancestors to wheat allopolyploids of different levels of ploidy.

Results

Molecular analysis of VRN1 loci allowed to establish that various dominant alleles of these loci appeared as a result of mutations in two main regulatory regions: the promoter and the first intron. In the diploid ancestors of wheat, especially, in those of A- genome (T. boeoticum, T. urartu), the dominant VRN1 alleles are rare in accordance with a limited distribution of spring forms in these species. In the first allotetraploid wheat species including T. dicoccoides, T. araraticum (T. timopheevii), the spring forms were associated with a new dominant alleles, mainly, within the VRN-A1 locus. The process of accumulation of new dominant alleles at all VRN1 loci was significantly accelerated in cultivated wheat species, especially in common, hexaploid wheat T. aestivum, as a result of artificial selection of spring forms adapted to different climatic conditions and containing various combinations of VRN1 homoeoalleles.

Conclusions

This mini-review summarizes data on the molecular structure and distribution of various VRN1 homoeoalleles in wheat allopolyploids and their diploid predecessors.
  相似文献   

14.
The apolipoprotein (Apo) C3 and A4 genes, which are members of the ApoA1/C3/A4/A5 gene cluster, play important roles in lipid metabolism. Despite their importance, studies on the association between these polymorphisms in patients with hypertension are rare. In this study, we examined the associations of ApoC3 (?482C>T rs2854117, ?455T>C rs2854116 and 3238G>C rs5128) and ApoA4 1687A>G rs5104 polymorphisms in Korean hypertensive patients. Three hundred and forty patients with hypertension and 515 healthy normotensive subjects were studied. ApoC3 and ApoA4 polymorphisms in the subjects were analyzed by polymerase chain reaction and restriction fragment length polymorphism. The four polymorphisms were not associated with susceptibility to hypertension. However, several haplotypes constructed from four polymorphisms of the ApoC3 and ApoA4 genes were associated with susceptibility to hypertension. With respect to the clinical parameters of hypertension, the ?482C>T and ?455T>C polymorphisms of the ApoC3 gene were associated with abnormal body mass index (P?=?0.024) and triglyceride levels (P?=?0.033) in the hypertensive group, respectively. Based on these results, the ApoC3 and ApoA4 polymorphisms might affect synergically susceptibility to hypertension in Koreans.  相似文献   

15.
As observed in other self-incompatible species in the Pyrinae subtribe, loquat (Eriobotrya japonica) demonstrates gametophytic self-incompatibility that is controlled by the S-locus, which encodes a polymorphic stylar ribonuclease (S-RNase). This allows the female reproductive organ (style) to recognize and reject the pollen from individuals with the same S-alleles, but allows the pollen from individuals with different S-alleles to effect fertilization. The S-genotype is therefore an important consideration in breeding strategies and orchard management. In an attempt to optimize the selection of parental lines in loquat production, the S-RNase alleles of 35 loquat cultivars and their 26 progeny, as well as five wild loquat species, were identified and characterized in this study. The best pollinizer cultivar combinations were also explored. A total of 28 S-alleles were detected, 21 of which constituted novel S-RNase alleles. The S-haplotypes S2 and S6 were the most frequent, followed by S 29 , S 31 , S 5 , S 24 , S 28 , S 33 , S 34 , S 32 , and S 15 , while the rare alleles S 1 , S 9 , S 14 , S 16 , S 17 , S 18 , S 19 , S 20 , S 21 , S 22 , S 23 , S 27 , and S 35 were only observed in one of the accessions tested. Moreover, the S-genotypes of five wild loquat species (E. prinoides, E. bengalensis, E. prinoides var. dadunensis, E. deflexa, and E. japonica) are reported here for the first time. The results will not only facilitate the selection of suitable pollinators for optimal orchard management, but could also encourage the crossbreeding of wild loquat species to enhance the genetic diversity of loquat cultivars.  相似文献   

16.
Diversity of A mating type in Lentinula edodes has been assessed by analysis of A mating loci in 127 strains collected from East Asia. It was discovered that hypervariable sequence region with an approximate length of 1 kb in the A mating locus, spanning 5′ region of HD2-intergenic region-5′ region of HD1, could represent individual A mating type as evidenced by comprehensive mating analysis. The sequence analysis revealed 27 A mating type alleles from 96 cultivated strains and 48 alleles from 31 wild strains. Twelve of them commonly appeared, leaving 63 unique A mating type alleles. It was also revealed that only A few A mating type alleles such as A1, A4, A5, and A7 were prevalent in the cultivated strains, accounting for 62.5% of all A mating types. This implies preferred selection of certain A mating types in the process of strain development and suggests potential role of A mating genes in the expression of genes governing mushroom quality. Dominant expression of an A mating gene HD1 was observed from A1 mating locus, the most prevalent A allele, in A1-containing dikaryons. However, connections between HD1 expression and A1 preference in the cultivated strains remain to be verified. The A mating type was highly diverse in the wild strains. Thirty-six unique A alleles were discovered from relatively small and confined area of mountainous region in Korean peninsula. The number will further increase because no A allele has been recurrently observed in the wild strains and thus newly discovered strain will have good chances to contain new A allele. The high diversity in small area also suggests that the A mating locus has evolved rapidly and thus its diversity will further increase.  相似文献   

17.
A complex study on the adaptation of cn and vn mutants and the allozymes of alcoholdehydrogenase (ADH) was carried out in initially pure lines, and their panmixia populations during exchange of the mutant genotype with that of wild-type flies (C-S) and D) through saturating crossings. The relative adaptation of the genotypes was estimated by their effect on reproductive efficiency in the experimentally obtained population. Fecundity, lifespan, and the resistance of the studied genotypes to hyperthermia were investigated individually. It was shown that the high level of adaptation of the cn mutants and the low level of adaptation of the vg mutants was correlated with the presence of different ADH allozymes. In the studied population, the F-allozyme of ADH accompanied the vg mutation, while the S-allozyme of the enzyme was detected in cn mutants. Saturating crossings of C-S(Adh Svg(Adh F) and D(Adh F) × cn(Adh S), along with the parallel determination of the allele composition of the Adh locus, demonstrated that the complete substitution of the F-allozyme of ADH in the vg mutants by the S-allozyme in D flies, as well as the substitution of the S-allozyme of ADH in the cn mutants by the F-allozyme in D flies was realized only after the 15th–20th backcrosses. These results favor the coadaptation of cn and vg marker genes with alleles of the Adh locus and indicate the important role of the latter in the adaptation of genotypes. In the studied population, selection acted primarily against the vg mutants, which were inferior to the cn mutants, and heterozygote genotypes in indices of the main adaptation components.  相似文献   

18.
Analysis of abnormal phenotypes produced by different types of mutations has been crucial for our understanding of gene function. Some floxed alleles that retain a neomycin-resistance selection cassette (neo cassette) are not equivalent to wild-type alleles and provide useful experimental resources. Pax6 is an important developmental gene and the aim of this study was to determine whether the floxed Pax6 tm1Ued (Pax6 fl ) allele, which has a retained neo cassette, produced any abnormal eye phenotypes that would imply that it differs from the wild-type allele. Homozygous Pax6 fl/fl and heterozygous Pax6 fl/+ mice had no overt qualitative eye abnormalities but morphometric analysis showed that Pax6 fl/fl corneas tended be thicker and smaller in diameter. To aid identification of weak effects, we produced compound heterozygotes with the Pax6 Sey-Neu (Pax6 ?) null allele. Pax6 fl/? compound heterozygotes had more severe eye abnormalities than Pax6 +/? heterozygotes, implying that Pax6 fl differs from the wild-type Pax6 + allele. Immunohistochemistry showed that the Pax6 fl/? corneal epithelium was positive for keratin 19 and negative for keratin 12, indicating that it was abnormally differentiated. This Pax6 fl allele provides a useful addition to the existing Pax6 allelic series and this study demonstrates the utility of using compound heterozygotes with null alleles to unmask cryptic effects of floxed alleles.  相似文献   

19.
Our studies have shown that the genotype and allele frequencies of polymorphisms G(?1607)GG of MMP1 gene, C(?1562)T of MMP9 gene, and A(?82)G of MMP12 gene do not significantly differ in the samples of chronic obstructive pulmonary disease (COPD) patients (N = 318) and healthy controls (N = 319) dwelling in Bashkortostan Republic. However, association of (?1562)T allele of the MMP9 gene with the severity of COPD disease progression has been revealed. In COPD patients at stage 4 of the disease, the frequency of allele T was significantly higher that in patients with the stages 2 and 3 (15.89% versus 8.38%; χ2 = 7.804; d.f. = 1; P = 0.005; OR = 2.06 95% CI 1.22–3.49). The distribution of the genotype frequencies of C(?1562)T polymorphism of MMP9 gene significantly differed between the patients with various COPD severity (χ2 = 9.849; d.f. = 2; P = 0.007). The individuals with rare genotype TT were revealed only among patients with severe COPD form (3.97% versus 0%; χ2 = 4.78; P = 0.029; P cor = 0.058). Analysis of this polymorphism in patients with early COPD onset (younger than 55 years old) has shown a significant increase in the allele T frequency in the group of patients with severe COPD (stage 4 according to GOLD) compared to the patients of the same age but with less severe COPD progression (χ2 = 5.26; d.f. = 1; P = 0.022). As the major clinical characteristics of stage 4 COPD is the development of pulmonary emphysema as well as bronchial walls deformation, we suggest that the increased expression of MMP9 gene caused by genetic polymorphism in the gene promoter is important in the early development of serious complications of the disease.  相似文献   

20.
Peach belongs to the genus Prunus, which includes Prunus persica and its relative species, P. mira, P. davidiana, P. kansuensis, and P. ferganensis. Of these, P. ferganensis have been classified as a species, subspecies, or geographical population of P. persica. To explore the genetic difference between P. ferganensis and P. persica, high-throughput sequencing was used in different peach accessions belonging to different species. First, low-depth sequencing data of peach accessions belonging to four categories revealed that similarity between P. ferganensis and P. persica was similar to that between P. persica accessions from different geographical populations. Then, to further detect the genomic variation in P. ferganensis, the P. ferganensis accession “Xinjiang Pan Tao 1” and the P. persica accession “Xia Miao 1” were sequenced with high depth, and sequence reads were assembled. The results showed that the collinearity of “Xinjiang Pan Tao 1” with the reference genome “Lovell” was higher than that of “Xia Miao 1” and “Lovell” peach. Additionally, the number of genetic variants, including single nucleotide polymorphisms (SNPs), structural variations (SVs), and the specific genes annotated from unmapped sequence in “Xia Miao 1” was higher than that in “Xinjiang Pan Tao 1” peach. The data showed that there was a close distance between “Xinjiang Pan Tao 1” (P. ferganensis) and reference genome which belong to P. persica, comparing “Xia Miao 1” (P. persica) and reference ones. The results accompany with phylogenetic tree and structure analysis confirmed that P. ferganensis should be considered as a geographic population of P. persica rather than a subspecies or a distinct species. Furthermore, gene ontology analysis was performed using the gene comprising large-effect variation to understand the phenotypic difference between two accessions. The result revealed that the pathways of gene function affected by SVs but SNPs and insertion-deletions markedly differed between the two peach accessions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号