首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
The fission-yeast gene cdc28+ was originally identified in a screen for temperature-sensitive mutants that exhibit a cell-division cycle arrest and was found to be required for mitosis. We undertook a study of this gene to understand more fully the general requirements for entry into mitosis. Cells carrying the conditional lethal cdc28-P8 mutation divide once and arrest in G2 after being shifted to the restrictive temperature. We cloned the cdc28+ gene by complementation of the temperature-sensitive growth arrest in cdc28-P8. DNA sequence analysis indicated that cdc28+ encodes a member of the DEAH-box family of putative RNA-dependent ATPases or helicases. The Cdc28 protein is most similar to the Prp2, Prp16, and Prp22 proteins from budding yeast, which are required for the splicing of mRNA precursors. Consistent with this similarity, the cdc28-P8 mutant accumulates unspliced precursors at the restrictive temperature. Independently, we isolated a temperature-sensitive pre-mRNA splicing mutant prp8-1 that exhibits a cell-cycle phenotype identical to that of cdc28-P8. We have shown that cdc28 and prp8 are allelic. These results suggest a connection between pre-mRNA splicing and progression through the cell cycle.  相似文献   

2.
prp13-1 is one of the mutants isolated in a screen for defective pre-mRNA splicing at a nonpermissive temperature in fission yeast Schizosaccharomyces pombe. We cloned the prp13+ gene and found that it encodes U4 small nuclear RNA (snRNA) involved in the assembly of the spliceosome. The prp13-1 mutant produced elongated cells, a phenotype similar to cell division cycle mutants, and displays a high incidence of lagging chromosomes on anaphase spindles. The mutant is hypersensitive to the microtubule-destabilizing drug thiabendazole, supporting that prp13-1 has a defect in chromosomal segregation. We found that the prp13-1 mutation resulted in expression of the ura4+ gene inserted in the pericentromeric heterochromatin region and reduced recruitment of the heterochromatin protein Swi6p to that region, indicating defects in the formation of pericentromeric heterochromatin, which is essential for the segregation of chromosomes, in prp13-1. The formation of centromeric heterochromatin is induced by the RNA interference (RNAi) system in S. pombe. In prp13-1, the processing of centromeric noncoding RNAs to siRNAs, which direct the heterochromatin formation, was impaired and unprocessed noncoding RNAs were accumulated. These results suggest that U4 snRNA is required for the RNAi-directed heterochromatic gene silencing at the centromeres. In relation to the linkage between the spliceosomal U4 snRNA and the RNAi-directed formation of heterochromatin, we identified a mRNA-type intron in the centromeric noncoding RNAs. We propose a model in which the assembly of the spliceosome or a sub-spliceosome complex on the intron-containing centromeric noncoding RNAs facilitates the RNAi-directed formation of heterochromatin at centromeres, through interaction with the RNA-directed RNA polymerase complex.  相似文献   

3.
J R Maddock  J Roy    J L Woolford  Jr 《Nucleic acids research》1996,24(6):1037-1044
We have identified six new genes whose products are necessary for the splicing of nuclear pre-mRNA in the yeast Saccharomyces cerevisiae. A collection of 426 temperature-sensitive yeast strains was generated by EMS mutagenesis. These mutants were screened for pre-mRNA splicing defects by an RNA gel blot assay, using the intron- containing CRY1 and ACT1 genes as hybridization probes. We identified 20 temperature-sensitive mutants defective in pre-mRNA splicing. Twelve appear to be allelic to the previously identified prp2, prp3, prp6, prp16/prp23, prp18, prp19 or prp26 mutations that cause defects in spliceosome assembly or the first or second step of splicing. One is allelic to SNR14 encoding U4 snRNA. Six new complementation groups, prp29-prp34, were identified. Each of these mutants accumulates unspliced pre-mRNA at 37 degrees C and thus is blocked in spliceosome assembly or early steps of pre-mRNA splicing before the first cleavage and ligation reaction. The prp29 mutation is suppressed by multicopy PRP2 and displays incomplete patterns of complementation with prp2 alleles, suggesting that the PRP29 gene product may interact with that of PRP2. There are now at least 42 different gene products, including the five spliceosomal snRNAs and 37 different proteins that are necessary for pre-mRNA splicing in Saccharomyces cerevisiae. However, the number of yeast genes identifiable by this approach has not yet been exhausted.  相似文献   

4.
We have investigated the role of a novel temperature-sensitive splicing mutation, prp18. We had previously demonstrated that an accumulation of the lariat intermediate of splicing occurred at the restrictive temperature in vivo. We have now used the yeast in vitro splicing system to show that extracts from this mutant strain are heat labile for the second reaction of splicing. The heat inactivation of prp18 extracts results from loss of activity of an exchangeable component. Inactivated prp18 extracts are complemented by heat-inactivated extracts from other mutants or by fractions from wild-type extracts. In heat-inactivated prp18 extracts, 40S splicing complexes containing lariat intermediate and exon 1 can assemble. The intermediates in this 40S complex can be chased to products by complementing extracts in the presence of ATP. Both complementation of extracts and chasing of the isolated prp18 spliceosomes takes place with micrococcal nuclease-treated extracts. Furthermore, the complementation profile with fractions of wild-type extracts indicates that the splicing defect results from a mutation in a previously designated factor required for the second step of splicing. The isolation of this mutant as temperature-sensitive lethal has also facilitated cloning of the wild-type allele by complementation.  相似文献   

5.
Summary We have generated a bank of temperature-sensitive (ts) Schizosaccharomyces pombe mutant strains. About 150 of these mutants were transformed with a ura4 gene containing an artificial intron. We screened these is mutants for mutants deficient in splicing of the ura4 intron. With this approach three mutants were isolated which have a general defect in the splicing process. Two of these mutants fall into the prp1 complementation group and one defines a new complementation group, prp4.  相似文献   

6.
New prp (pre-mRNA processing) mutants of the fission yeast Schizosaccharomyces pombe were isolated from a bank of 700 mutants that were either temperature sensitive (ts-) or cold sensitive (cs-) for growth. The bank was screened by Northern blot analysis with probes complementary to S. pombe U6 small nuclear RNA (sn RNA), the gene for which has a splicesomal (mRNA-type) intron. We identified 12 prp mutants that accumulated the U6 snRNA precursor at the nonpermissive temperature. All such mutants were also found to have defects in an early step of TFIID pre-mRNA splicing at the nonpermissive temperature. Complementation analyses showed that seven of the mutants belong to six new complementation groups designated as prp8 and prp10-prp14, whereas the five other mutants were classified into the known complementation groups prp1, prp2 and prp3. Interestingly, some of the isolated prp mutants produced elongated cells at the nonpermissive temperature, which is a phenotype typical of cell division cycle (cdc) mutants. Based on these findings, we propose that some of the wild-type products from these prp + genes play important roles in the cellular processes of pre-mRNA splicing and cell cycle progression.  相似文献   

7.
The temperature-sensitiveprp24-1 mutation defines a gene product required for the first step in pre-mRNA splicing. PRP24 is probably a component of the U6 snRNP particle. We have applied genetic reversion analysis to identify proteins that interact with PRP24. Spontaneous revertants of the temperaturesensitive (ts)prp24-1 phenotype were analyzed for those that are due to extragenic suppression. We then extended our analysis to screen for suppressors that confer a distinct conditional phenotype. We have identified a temperature-sensitive extragenic suppressor, which was shown by genetic complementation analysis to be allelic toprp21-1. This suppressor,prp21-2, accumulates pre-mRNA at the non-permissive temperature, a phenotype similar to that ofprp21-1. prp21-2 completely suppresses the splicing defect and restores in vivo levels of the U6 snRNA in theprp24-1 strain. Genetic analysis of the suppressor showed thatprp21-2 is not a bypass suppressor ofprp24-1. The suppression ofprp24-1 byprp21-2 is gene specific and also allele specific with respect to both the loci. Genetic interactions with other components of the pre-spliceosome have also been studied. Our results indicate an interaction between PRP21, a component of the U2 snRNP, and PRP24, a component of the U6 snRNP. These results substantiate other data showing U2–U6 snRNA interactions.  相似文献   

8.
9.
Secretory proteins in eukaryotic cells are transported to the cell surface via the endoplasmic reticulum (ER) and the Golgi apparatus by membrane-bounded vesicles. We screened a collection of temperature-sensitive mutants of Saccharomyces cerevisiae for defects in ER-to-Golgi transport. Two of the genes identified in this screen were PRP2, which encodes a known pre-mRNA splicing factor, and RSE1, a novel gene that we show to be important for pre-mRNA splicing. Both prp2-13 and rse1-1 mutants accumulate the ER forms of invertase and the vacuolar protease CPY at restrictive temperature. The secretion defect in each mutant can be suppressed by increasing the amount of SAR1, which encodes a small GTPase essential for COPII vesicle formation from the ER, or by deleting the intron from the SAR1 gene. These data indicate that a failure to splice SAR1 pre-mRNA is the specific cause of the secretion defects in prp2-13 and rse1-1. Moreover, these data imply that Sar1p is a limiting component of the ER-to-Golgi transport machinery and suggest a way that secretory pathway function might be coordinated with the amount of gene expression in a cell.  相似文献   

10.
11.
The SR protein family is involved in constitutive and regulated pre-mRNA splicing and has been found to be evolutionarily conserved in metazoan organisms. In contrast, the genome of the unicellular yeast Saccharomyces cerevisiae does not contain genes encoding typical SR proteins. The mammalian SR proteins consist of one or two characteristic RNA binding domains (RBD), containing the signature sequences RDAEDA and SWQDLKD respectively, and a RS (arginine/serine-rich) domain which gave the family its name. We have now cloned from the fission yeast Schizosaccharomyces pombe the gene srp1. This gene is the first yeast gene encoding a protein with typical features of mammalian SR protein family members. The gene is not essential for growth. We show that overexpression of the RNA binding domain inhibits pre-mRNA splicing and that the highly conserved sequence RDAEDA in the RBD is involved. Overexpression of Srp1 containing mutations in the RS domain also inhibits pre-mRNA splicing activity. Furthermore, we show that overexpression of Srp1 and overexpression of the mammalian SR splicing factor ASF/SF2 suppress the pre-mRNA splicing defect of the temperature-sensitive prp4-73 allele. prp4 encodes a protein kinase involved in pre-mRNA splicing. These findings are consistent with the notion that Srp1 plays a role in the splicing process.  相似文献   

12.
D H Kim  G Edwalds-Gilbert  C Ren  R J Lin 《Genetics》1999,153(3):1105-1115
The PRP2 gene in Saccharomyces cerevisiae encodes an RNA-dependent ATPase that activates spliceosomes for the first transesterification reaction in pre-mRNA splicing. We have identified a mutation in the elongation methionine tRNA gene EMT1 as a dominant, allele-specific suppressor of the temperature-sensitive prp2-1 mutation. The EMT1-201 mutant suppressed prp2-1 by relieving the splicing block at high temperature. Furthermore, EMT1-201 single mutant cells displayed pre-mRNA splicing and cold-sensitive growth defects at 18 degrees. The mutation in EMT1-201 is located in the anticodon, changing CAT to CAG, which presumably allowed EMT1-201 suppressor tRNA to recognize CUG leucine codons instead of AUG methionine codons. Interestingly, the prp2-1 allele contains a point mutation that changes glycine to aspartate, indicating that EMT1-201 does not act by classical missense suppression. Extra copies of the tRNA(Leu)(UAG) gene rescued the cold sensitivity and in vitro splicing defect of EMT1-201. This study provides the first example in which a mutation in a tRNA gene confers a pre-mRNA processing (prp) phenotype.  相似文献   

13.
14.
15.
Earlier studies on genetic suppression ofprp24-1 byprp21-2 suggested an association between yeast Prp21 and Prp24 proteins, which are associated, respectively, with U2 snRNA and U6 snRNA. Here we report analyses of physical and functional interaction between these factors. Missense mutations in functionally important domains reside inprp21-2 andprp24-1. Two-hybrid assays do not detect interaction between wild-type or mutant proteins. Prp21-2 and Prp24-1 protein inprp21-2 orprp24-1 extracts can be heat-inactivatedin vitro. In contrast, heat-treated extracts from the revertant strainprp21-2 prp24-1 demonstrate allele-specific restoration of splicing. Suppression ofprp24-1 byprp21-2 does not cause coimmunoprecipitation of U2 and U6 snRNAs. We demonstrate the presence of Prp21 in the spliceosome assembly intermediate A2-1, and our data suggest the presence of Prp24 in the same complex. Kinetic analysis of assembly in heat-treated revertant extracts reveal a rate-limiting conversion of complex B to A2-1, suggesting transient association between the mutant proteins at this step. Our data also imply a requirement for Prp21 during B to A2-1 conversion. We conclude that a transient yet likely functional association between Prp21 and Prp24 occurs during spliceosome assembly.  相似文献   

16.
During the splicing process, spliceosomal snRNAs undergo numerous conformational rearrangements that appear to be catalyzed by proteins belonging to the DEAD/H-box superfamily of RNA helicases. We have cloned a new RNA helicase gene, designated DBP2 (DEAH-boxprotein), homologous to the Schizosaccaromyces pombe cdc28(+)/prp8(+) gene involved in pre-mRNA splicing and cell cycle progression. The full-length DBP2 contains 3400 nucleotides and codes for a protein of 1041 amino acids with a calculated mol. wt of 119 037 Da. Transfection experiments demonstrated that the GFP-DBP2 gene product, transiently expressed in HeLa cells, was localized in the nucleus. The DBP2 gene was mapped by FISH to the MHC region on human chromosome 6p21.3, a region where many malignant, genetic and autoimmune disease genes are linked. Because the expression of DBP2 gene in S.pombe prp8 mutant cells partially rescued the temperature-sensitive phenotype, we conclude that DBP2 is a functional human homolog of the fission yeast Cdc28/Prp8 protein.  相似文献   

17.
Only four prp (pre-mRNA processing) genes of the fission yeast Schizosaccharomyces pombe have been reported. We exploited yeast genetics and identified and isolated the prp4 gene. Sequence analysis revealed that the splicing factor encoded by this gene contains the signature sequences that define the serine/threonine protein kinase family. This is the first kinase gene identified whose product is involved in pre-mRNA splicing. The prp4 gene contains one intron in the kinase domain. Gene replacement studies provided evidence that this gene is essential for growth and is located on chromosome III.  相似文献   

18.
PRP19: a novel spliceosomal component.   总被引:9,自引:3,他引:6       下载免费PDF全文
We have isolated the gene of a splicing factor, PRP19, by complementation of the temperature-sensitive growth defect of the prp19 mutant of Saccharomyces cerevisiae. The gene encodes a protein of 502 amino acid residues of molecular weight 56,500, with no homology to sequences in the data base. Unlike other PRP proteins or mammalian splicing factors, the sequence of PRP19 has no discernible motif. Immunoprecipitation studies showed that PRP19 is associated with the spliceosome during the splicing reaction. Although the exact function of PRP19 remains unknown, PRP19 appears to be distinct from the other PRP proteins or other spliceosomal components.  相似文献   

19.
 New prp (pre-mRNA processing) mutants of the fission yeast Schizosaccharomyces pombe were isolated from a bank of 700 mutants that were either temperature sensitive (ts-) or cold sensitive (cs-) for growth. The bank was screened by Northern blot analysis with probes complementary to S. pombe U6 small nuclear RNA (sn RNA), the gene for which has a splicesomal (mRNA-type) intron. We identified 12 prp mutants that accumulated the U6 snRNA precursor at the nonpermissive temperature. All such mutants were also found to have defects in an early step of TFIID pre-mRNA splicing at the nonpermissive temperature. Complementation analyses showed that seven of the mutants belong to six new complementation groups designated as prp8 and prp10-prp14, whereas the five other mutants were classified into the known complementation groups prp1, prp2 and prp3. Interestingly, some of the isolated prp mutants produced elongated cells at the nonpermissive temperature, which is a phenotype typical of cell division cycle (cdc) mutants. Based on these findings, we propose that some of the wild-type products from these prp + genes play important roles in the cellular processes of pre-mRNA splicing and cell cycle progression. Received: 15 April 1996/Accepted: 9 July 1996  相似文献   

20.
The temperature-sensitiveprp24-1 mutation defines a gene product required for the first step in pre-mRNA splicing. PRP24 is probably a component of the U6 snRNP particle. We have applied genetic reversion analysis to identify proteins that interact with PRP24. Spontaneous revertants of the temperaturesensitive (ts)prp24-1 phenotype were analyzed for those that are due to extragenic suppression. We then extended our analysis to screen for suppressors that confer a distinct conditional phenotype. We have identified a temperature-sensitive extragenic suppressor, which was shown by genetic complementation analysis to be allelic toprp21-1. This suppressor,prp21-2, accumulates pre-mRNA at the non-permissive temperature, a phenotype similar to that ofprp21-1. prp21-2 completely suppresses the splicing defect and restores in vivo levels of the U6 snRNA in theprp24-1 strain. Genetic analysis of the suppressor showed thatprp21-2 is not a bypass suppressor ofprp24-1. The suppression ofprp24-1 byprp21-2 is gene specific and also allele specific with respect to both the loci. Genetic interactions with other components of the pre-spliceosome have also been studied. Our results indicate an interaction between PRP21, a component of the U2 snRNP, and PRP24, a component of the U6 snRNP. These results substantiate other data showing U2–U6 snRNA interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号