首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biodegradation of phenol and 4-chlorophenol (4-cp) using pure culture of Candida albicans PDY-07 under anaerobic condition was studied. The results showed that the strain could completely degrade up to 1,800 mg/l phenol within 68 h. The capacity of the strain to degrade phenol was higher than that to degrade 4-cp. In the dual-substrate system, 4-cp intensely inhibited phenol biodegradation. Comparatively, low-concentration phenol from 25 to 150 mg/l supplied a carbon and energy source for Candida albicans PDY-07 in the early phase of biodegradation and accelerated the assimilation of 4-cp, which resulted in that 50 mg/l 4-cp was degraded within less time than that without phenol. While the biodegradation of 50 mg/l 4-cp was inhibited in the presence of 200 mg/l phenol. In addition, the intrinsic kinetics of cell growth and substrate degradation were investigated with phenol and 4-cp as single and dual substrates in batch cultures. The results demonstrated that the models adequately described the dynamic behaviors of biodegradation by Candida albicans PDY-07.  相似文献   

2.
The objective of this study was to achieve a better quantitative understanding of the kinetics of 2,4,6-trichlorophenol (TCP) biodegradation by an acclimated mixed microbial culture. An aerobic mixed microbial culture, obtained from the aeration basin of the wastewater treatment plant, was acclimated in shake flasks utilizing various combinations of 2,4,6-TCP (25–100 mg l−1), phenol (300 mg l−1) and glycerol (2.5 mg l−1) as substrates. Complete primary TCP degradation and a corresponding stoichiometric release of chloride ion were observed by HPLC and IEC analytical techniques, respectively. The acclimated cultures were then used as an inoculum for bench scale experiments in a 4 l stirred-tank reactor (STR) with 2,4,6-TCP as the sole carbon/energy (C/E) source. The phenol acclimated mixed microbial culture consisted of primarily Gram positive and negative rods and was capable of degrading 2,4,6-TCP completely. None of the predicted intermediate compounds were detected by gas chromatography in the cell cytoplasm or supernatant. Based on the disappearance of 2,4,6-TCP, degradation was well modelled by zero-order kinetics which was also consistent with the observed oxygen consumption. Biodegradation rates were compared for four operating conditions including two different initial 2,4,6-TCP concentrations and two different initial biomass concentrations. While the specific rate constant was not dependent on the initial 2,4,6-TCP concentration, it did depend on the initial biomass concentration (X init). A lower biomass concentration gave a much higher zero-order specific degradation rate. This behaviour was attributed to a lower average biomass age or cell retention time (θx) for these cultures. The implications of this investigation are important for determining and predicting the potential risks associated with TCP, its degradation in the natural environment or the engineering implications for ex situ treatment of contaminated ground water or soil.  相似文献   

3.
Phenol degradation efficiency of cold-tolerant Arthrobacter sp. AG31 and mesophilic Pseudomonas putida DSM6414 was compared. The cold-tolerant strain was cultivated at 10°C, while the mesophile was grown at 25°C. Both strains degraded 200 mg and 400 mg phenol/l within 48–72 h of cultivation, but the cold-tolerant strain produced more biomass than the mesophile. Both strains oxidized catechol by the ortho type of ring fission. Catechol 1,2 dioxygenase (C1,2D) activity was found intra- and extracellularly in the absence and in the presence of phenol. In the presence of 200 mg phenol/l, C1,2D activity of the mesophile was about 1.5- to 2-fold higher than that of the cold-tolerant strain. However, an initial phenol concentration of 400 mg/l resulted in a comparable enzyme activity of the cold-tolerant and the mesophilic strain. The two strains differed significantly in their toxicity pattern towards 12 aromatic (mostly phenolic) compounds at different growth temperatures, which was determined via growth inhibition in the presence of nutrients and toxicants. For the cold-tolerant strain, toxicity was significantly lower at 10°C than at 25°C. The mesophile showed a significantly lower susceptibility to high hydrocarbon concentrations when grown at 25°C compared to 10°C.Communicated by K. Horikoshi  相似文献   

4.
Phenol, a major pollutant in several industrial waste waters is often used as a model compound for studies on biodegradation. This study investigated the anoxic degradation of phenol and other phenolic compounds by a defined mixed culture of Alcaligenes faecalis and Enterobacter species. The culture was capable of degrading high concentrations of phenol (up to 600 mg/l) under anoxic conditions in a simple minimal mineral medium at an initial cell mass of 8 mg/l. However, the lag phase in growth and phenol removal increased with increase in phenol concentration. Dissolved CO2 was an absolute requirement for phenol degradation. In addition to nitrate, nitrite and oxygen could be used as electron acceptors. The kinetic constants, maximum specific growth rate max; inhibition constant, K i and saturation constant, K s were determined to be 0.206 h–1, 113 and 15 mg phenol/l respectively. p-Hydroxybenzoic acid was identified as an intermediate during phenol degradation. Apart from phenol, the culture utilized few other monocyclic aromatic compounds as growth substrates. The defined culture has remained stable with consistent phenol-degrading ability for more than 3 years and thus shows promise for its application in anoxic treatment of industrial waste waters containing phenolic compounds.  相似文献   

5.
Two mixed cultures, phenol-oxidizing (PO) and glucose-oxidizing (GO), were cultivated in two parallel chemostat reactors. The PO culture was enriched on phenol, and the GO culture was enriched on glucose. Batch biodegradation experiments were conducted to examine the degradation of 4-chlorophenol (4-CP) under various substrate conditions. The results indicate that in the absence of added growth substrate, 4-CP transformation by PO culture was complete at S c o /X o (initial 4-CP concentration/initial biomass concentration) 0.27 and that by GO culture was complete at S c o /X o = 0.09. In the presence of 5–500 mg phenol/l, the phenol dosage required to achieve the complete transformation of 4-CP was 60 mg/l at S c o /X o = 1, increasing to 120 mg/l at S c o /X o = 2, and to 180 mg/l at S c o /X o = 5. As glucose was added to the GO culture at a concentration of over 5–500 mg chemical oxygen demand (COD)/l, 4-CP was not completely transformed at S c o /X o = 5 [S c o = 50 mg/l, X o = 10 mg/l volatile suspended solids (VSS)]. These two cultures in utilizing added growth substrate were easily switched between glucose and phenol. Overall, the capacity of PO culture to degrade 4-CP, expressed as T c (4-CP mass consumed /biomass inactivated, having unit of mg 4-CP/mg VSS), was 0.15–0.80, which compares with T c values of 0.05–0.26 for GO culture. This work shows that adding phenol as a growth substrate is preferable over adding glucose, as it enhances 4-CP transformation, but a final choice should take into account both degradation efficiency and the risk of phenol toxicity.  相似文献   

6.
A Pseudomonas sp. strain, CP4, was isolated that used phenol up to 1.5 g/l as sole source of carbon and energy. Optimal growth on 1.5 g phenol/l was at pH 6.5 to 7.0 and 30°C. Unadapted cells needed 72 h to decrease the chemical oxygen demand (COD) of about 2000 mg/l (from 1 g phenol/l) to about 200 mg/l. Adapted cells, pregrown on phenol, required only 65 h to decrease the COD level to below 100 mg/l. Adaptation of cells to phenol also improved the degradation of cresols. Cell-free extracts of strain CP4 grown on phenol or o-, m- or p-cresol had sp. act. of 0.82, 0.35, 0.54 and 0.32 units of catechol 2,3-dioxygenase and 0.06, 0.05, 0.05 and 0.03 units of catechol 1,2-dioxygenase, respectively. Cells grown on glucose or succinate had neither activity. Benzoate and all isomers of cresol, creosote, hydroxybenzoates, catechol and methyl catechol were utilized by strain CP4. No chloroaromatic was degraded, either as sole substrate or as co-substrate.The authors are with the Department of Microbiology and Bioengineering, Central Food Technological Research Institute, Mysore-570 013, India  相似文献   

7.
Summary The anaerobic degradation of phenol under denitrifying conditions by a bacterial consortium was studied both in batch and continuous cultures. Anaerobic degradation was dependent on NOf3 p– and concentrations up to 4 mm phenol were degraded within 2–5 days. During continuous growth in a fermenter, steady states could be maintained at eight dilution rates (D) corresponding to residence times between 12.5 and 50 h. Culture wash-out occurred at D=0.084 h–1. The kinetic parameters obtained for anaerobic degradation of phenol under denitrifying conditions by the consortium were: maximam specific growth rate = 0.091 h–1; saturation constant = 4.91 mg phenol/l; true growth yield = 0.57 mg dry wt/mg phenol; maintenance coefficient = 0.013 mg phenol/mg dry wt per hour. The Haldane model inhibition constant was estimated from batch culture data giving a value of 101 mg/l. The requirement of CO2 for the anaerobic degradation of phenol with NOf3 p– indicates that phenol carboxylation to 4-hydroxybenzoate was the first step of phenol degradation by this culture. 4-Hydroxybenzoate, proposed as an intermediate of phenol carboxylation under these conditions, was detected only in continuous cultures at very low growth rates (D=0.02 h–1), but was never detected as a free intermediary metabolite either in batch or in continuous cultures. Correspondence to: N. Khoury  相似文献   

8.
Biodegradation of phenol by a mixed microbial culture, isolated from a sewage treatment plant, was investigated in batch shake flasks. A minimum concentration of 100 and a maximum of 800 mg 1(-1) of phenol in the media were adapted in the degradation study. The phenol degradation rate varied largely and was less than 10 mg l(-1)h(-1) at both extremes of the initial concentrations in the media. The degradation rate was maximum 15.7 mg l(-1)h(-1) at 400 mg l(-1) phenol. The culture followed substrate inhibition kinetics and the specific growth rate were fitted to Haldane and Han-Levenspiel models. Between the two models the Han-Levenspiel was found to be a better fit with a root mean square error of 0.0211. The biokinetics constants estimated using these models showed good potential of the mixed microbial culture in phenol degradation.  相似文献   

9.
Summary The kinetics for growth on phenol by a yeast identified asCandida tropicalis was investigated in batch culture and by respirometry. The culture was tolerant of an initial phenol concentration of up to 1.5 g/l. The optimum temperature for phenol oxidation was 32°C and below this the Arrhenius relationship was obeyed. A Michaelis Menten relationship described the substrate inhibition of theCandida by phenol.  相似文献   

10.
S ummary : Three strains of bacteria responsible for the destruction of the major constituents of carbonization waste liquor were isolated from a laboratory scale, activated sludge plant successfully treating such a liquor. Of the 3 strains one was able to grow on thiocyanate; the other 2 strains grew well on phenol. Behaviour of these organisms in pure and mixed culture showed marked differences: in pure culture, growth of the thiocyanate-degrading strain was unaffected by the presence of 100 mg of phenol/l, but in mixed culture, active growth of another organism on the phenol completely inhibited growth on the thiocyanate. Batch and continuous culture experiments were made with 2 organisms competing for phenol. Both stimulation and inhibition of growth were found, dependent on the ratio between the concentrations of organisms present.  相似文献   

11.
Summary A defined mixed culture of the yeast Cryptococcus elinovii H1 and the bacterium Pseudomonas putida P8 was immobilized by adsorption on activated carbon and sintered glass, respectively. Depending on its adsorption capacity for phenol the activated carbon system could completely degrade 17 g/l in batch culture, whereas the sintered glass system was able to degrade phenol up to 4 g/l. During semicontinuous degradation of phenol (1 g/l) both systems reached constant degradation times with the fourth batch that lasted 8 h when using the activated carbon system and 10 h in the sintered glass system. In the course of continuous degradation of phenol the activated carbon system reached a maximum degradation rate of 9.2 g l–1 day–1 compared to 6.4 g l–1 day–1degraded by the sintered glass system. 2-Hydroxymuconic acid semialdehyde could be identified and quantitatively determined as a metabolite of phenol degradation by P. putida P8. Increased membrane permeability under the influence of phenol was demonstrated by the examination of K+ efflux from P. putida P8. Offprint requests to: H.-J. Rehm  相似文献   

12.
Optimal operational factors for nitrite accumulation in batch reactors   总被引:12,自引:0,他引:12  
Bae W  Baek S  Chung J  Lee Y 《Biodegradation》2001,12(5):359-366
The environmental factors that affected the accumulation of nitrite in nitrifying reactors were investigated using a mixed culture. A batch reactor with 50 mg-N/l of ammonia was used. The pH, temperature and dissolved oxygen concentration were varied. The concentration of unionized free ammonia also changed with the oxidation of ammonia and the variation of pH and temperature. The accumulation of nitrite was affected sensitively by pH and temperature. A higher nitrite concentration was observed at pH 8-9 or temperature around 30 °C. The dissolved oxygen also affected, giving the highest nitrite accumulation at around 1.5 mg/l. These were the favoredconditions for nitrite production. The free ammonia concentration influenced thenitrite accumulation also, by inhibiting nitrite oxidation. The inhibition becameapparent at a concentration of approximately 4 mg/l or above, but insignificant atbelow 1 mg/l. Thus, simultaneously high free ammonia concentration and maximumspecific ammonia-oxidation rate (above 15 × 10-3 mg-N/mg-VSSh)were needed for a significant nitrite accumulation. When the two conditions were met, thenthe highest accumulation was observed when the ratio of the maximum specific oxidationrate of ammonia to the maximum specific oxidation rate of nitrite (ka/kn) was highest.Under the optimal operating conditions of pH 8, 30 °C and 1.5 mg/l of dissolvedoxygen, as much as 77% of the removed ammonia accumulated in nitrite.  相似文献   

13.
A highly embryogenic culture ofEucalyptus citriodora was obtained by repetitive embryogenesis from somatic embryos cultured in the dark on a medium containing 500 mg/l each of glutamine and casein hydrolysate, 30 g/l of sucrose and 5 mg/l of 1-napthaleneacetic acid. Cultures retained morphogenetic ability for upto 36 months when maintained at 27°C by subculture at intervals of 4–5 weeks. The subculture period could be extended beyond 9 months if cultures were incubated at 10°C. On a hormone free medium incubated in light 50% of the embryos germinated to plantlets of which 70% survived when transferred to a sand and soil mixture.Abbreviations NAA 1-naphthal eneacetic acid NCL Communication No: 4480  相似文献   

14.
The simultaneous removal of 4-chlorophenol (4-CP) and phenol in lab-scale sequencing batch reactors at different temperatures has been studied. Phenol feed concentration was fixed at 525 mg/L and 4-CP concentration was increased from 105 to 2100 mg/L at a constant hydraulic residence time (HRT) of 10.5 d. Complete phenol and 4-CP biodegradation was achieved during the aerobic stage working with 4-CP concentrations up to 1470 mg/L in the feed. Both 4-CP and phenol specific initial removal rates were strongly affected by 4-CP feed concentration and temperature. Only at the highest temperature tested (35 °C) it was possible to increase the maximum assimilative 4-CP concentration by the biological sludge up to 2100 mg/L, and a significant reduction of the ecotoxicity of the effluents was observed. 4-chlorocatechol (4-CC) was identified as the major intermediate in the aerobic cometabolic 4-CP degradation, being the ecotoxicity of that species substantially lower than that of 4-CP.  相似文献   

15.
Microrhizomes of Zingiber officinale were successfully produced from tissue culture derived shoots by transferring them to liquid MS medium supplemented with 1 mg/l BAP, 2 mg/l calcium pantothenate, 0.2 mg/l GA3 and 0.05 mg/l NAA for shoot proliferation. After 4 weeks of incubation, the medium was replaced with microrhizome induction medium, consisting of MS salts supplemented with 8 mg/l BAP and 75 g/l sucrose. Microrhizome formation started after 20 d of incubation in stationary cultures at 25+1 ° in the dark. Microrhizomes with 1–4 buds and weighing 73.8 to 459 mg each were harvested after 50–60 d. After storage for 2 months in moist sand at room temperature, 80% of the microrhizomes sprouted producing roots and shoots.Abbreviations BAP 6-benzylaminopurine - GA3 gibberellic acid - NAA naphthaleneacetic acid - MS Murashige and Skoog (1962) medium  相似文献   

16.
Jiang Y  Wen J  Lan L  Hu Z 《Biodegradation》2007,18(6):719-729
Biodegradation of phenol and 4-chlorophenol (4-cp) using a pure culture of Candida tropicalis was studied. The results showed that C. tropicalis could degrade 2,000 mg l−1 phenol alone and 350 mg l−1 4-cp alone within 66 and 55 h, respectively. The capacity of the strain to degrade phenol was obviously higher than that to degrade 4-cp. In the dual-substrate system, 4-cp intensely inhibited phenol biodegradation. Phenol beyond 800 mg l−1 could not be degraded in the presence of 350 mg l−1 4-cp. Comparatively, low-concentration phenol from 100 to 600 mg l−1 supplied a sole carbon and energy source for C. tropicalis in the initial phase of biodegradation and accelerated the assimilation of 4-cp, which resulted in the fact that 4-cp biodegradation velocity was higher than that without phenol. And the capacity of C. tropicalis to degrade 4-cp was increased up to 420 mg l−1 with the presence of 100–160 mg l−1 phenol. In addition, the intrinsic kinetics of cell growth and substrate degradation were investigated with phenol and 4-cp as single and mixed substrates in batch cultures. The results illustrated that the models proposed adequately described the dynamic behaviors of biodegradation by C. tropicalis.  相似文献   

17.
Biological oxidation rates of CS2 with a mixed microbial culture obtained from a trickling filter were optimal with 3 mM CS2, pH 7, 30°C and SO4 2– below 25 g l–1. Degradation rates were 3.4 mg CS2/gproteinmin and 13.8 mg H2S/gproteinmin. The concentrations of intermediates (H2S, COS and S°) and the product (SO4 2–) of CS2 oxidation were measured. The biological oxidation was due principally to Gram negative bacteria.  相似文献   

18.
A mixed culture derived from cow dung and sewage sludge and adapted to phenol was used for anaerobic phenol degradation. The phenol degradation rate depended on the period of adaptation of the mixed culture to phenol. In the continuous process, a higher degradation rate (2500 mg.1-1 d-1) and better reactor stability was achieved with a granular activated-carbon-packed bed reactor than with a stirred tank reactor.The authors are with the Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology, Delhi Hauz Khas, New Delhi, India.  相似文献   

19.
BothPseudomonas putida F1 and a mixed culture were used to study TCE degradation in continuous culture under aerobic, non-methanotrophic conditions. TCE mass balance studies were performed with continuous culture reactors to determine the total percent removed in the reactors, and to quantify the percent removed by air stripping and biodegradation. Adsorption of TCE to biomass was assumed to be negligible. This research demonstrated the feasibility of treating TCE-contaminated water under aerobic, non-methanotrophic conditions with a mixed-culture, continuous-flow system.Initially glucose and acetate were fed as primary substrates. Pnenol, which has been shown to induce TCE-degrading enzymes, was fed at a much lower concentration (20mg/L). Little degradation of TCE was observed when acetate and glucose were the primary substrates. After omitting glucose and acetate from the feed and increasing the phenol concentration to 50mg/L, TCE biotransformation was observed at a significant level (46%). When the phenol concentration in the feed was increased to 420mg/L, 85% of the incoming TCE was estimated to have been biodegraded. Under the same conditions, phenol utilization by the mixed culture was greater than that ofP. putida F1, and TCE degradation by the mixed culture (85%) exceeded that ofP. putida F1 (55%). The estimated percent-of-TCE biodegraded by the mixed culture was consistently greater than 80% when phenol was fed at 420mg/L. Biodegradation of TCE was also observed in mixed-culture, batch experiments.  相似文献   

20.
Two lines of the red and pale yellow cell suspension cultures, prepared fromPrunus x yedoensis Matsum. callus induced by Murashige and Skoog's (1962) basal medium supplemented with 2, 4-dichlorophenoxyacetic acid (2, 4-D, 1.0 mg/l), kinetin (0.1 mg/l) and sucrose (30 g/l), were maintained on Schenk and Hildebrandt medium as modified by Mitchell and Gildow (1975). The red cell suspension culture produced cyanidin 3-monoglucoside, 5, 4′-dihydroxy-7-methoxyisoflavone 4′-glucoside (prunetrin), isoquercitrin, catechin, epicatechin, and procyanidin B-1, B-2, B-3 and B-4, while the pale yellow cells produced only a small amount of catechin and epicatechin as main flavonoids. These flavonoid compounds found in the red cell culture were present also in maturePrunus leaves. Maximum growth and maximum amount of total phenol and proanthocyanidin (procyanidins) were obtained with 0.3 mg/l of both 2,4-D and kinetin. Maximum concentration of anthocyanin was also obtained with 0.3 mg/l 2, 4-D regardless of kinetin concentration. Accumulation of proanthocyanidin was markedly stimulated by low concentrations of phosphate, which reduced growth by about half, and also by high concentrations of inorganic nitrogen. Production of both anthocyanin and proanthocyanidin was reduced by lowered nitrogen levels. Cell growth and production of all phenolics were inhibited when ammonium ion replaced nitrate in the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号