首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 380 毫秒
1.
Diesel exhaust particles (DEP) induce pulmonary tumors, asthma-like symptoms, and the like in experimental animals. The involvement of reactive oxygen species (ROS) is suggested in the injuries induced by DEP, though the generation of ROS has not been proven. The present study provided the first direct evidence of *OH generation in the lungs of living mice after intratracheal instillation of DEP, using noninvasive L-band ESR spectroscopy and a membrane-impermeable nitroxyl probe. *OH generation is confirmed with the enhancement of in vivo ESR signal decay rate of the probe. The decay rate at mid-thorax was significantly enhanced in DEP-treated mice compared to that in vehicle-treated mice. The enhancement was completely suppressed by the administration of either *OH scavengers, catalase, or desferrioxamine, while the administration of SOD further increased the rate. The administration of Fenton's reagents into the lung also enhanced the decay rate of the probe at mid-thorax of mice. These results clearly provided evidence that the intratracheal exposure to DEP in mice produced *OH in the lung through an iron-catalyzed reaction of superoxide/H(2)O(2). This first direct evidence of *OH generation in DEP-treated mice lung may be utilized to determine treatments for DEP-induced lung injury.  相似文献   

2.
It has been proposed that plant cell-wall polysaccharides are subject in vivo to non-enzymic scission mediated by hydroxyl radicals (-*OH). In the present study, xyloglucan was subjected in vitro to partial, non-enzymic scission by treatment with ascorbate plus H(2)O(2), which together generate -*OH. The partially degraded xyloglucan appeared to contain ester bonds within the backbone, as indicated by an irreversible decrease in viscosity upon alkaline hydrolysis. Aldehyde and/or ketone groups were also introduced into the polysaccharide by -*OH-attack, as indicated by staining with aniline hydrogen-phthalate and by reaction with NaB(3)H(4). The introduction of ester and oxo groups supports the proposed sequence of reactions: (a) -*OH-mediated H-abstraction to produce a carbon-centred carbohydrate radical; (b) reaction of the latter with O(2); and (c) elimination of a hydroperoxyl radical (HO(2)*-). When the partially degraded xyloglucan was reduced with NaB(3)H(4) followed by acid hydrolysis, several 3H-aldoses were detected ([3H]galactose, [3H]xylose, [3H]glucose, [3H]ribose and probably [3H]mannose), in addition to unidentified 3H-products (probably including anhydroaldoses). 3H-Alditols were undetectable, showing that few or no conventional reducing termini were introduced. Digestion of the NaB(3)H(4)-reduced, partially degraded xyloglucan with Driselase released 25 times more [3H]Xyl-alpha-(1-->6)-Glc than Xyl-alpha-(1-->6)-[3H]Glc, suggesting that the xylose side-chains of the xyloglucan had been more heavily attacked by -*OH than the glucose residues of the backbone. The radioactive xyloglucan was readily digested by cellulase, yielding 3H-products in the hepta- to nonasaccharide range. A fingerprinting strategy for identifying -*OH-attacked xyloglucan in plant cell walls is proposed.  相似文献   

3.
We report here the relative roles of metals and selected reactive oxygen species in DNA damage by the genotoxic benzene metabolite 1,2,4-benzenetriol, and the interactions of antioxidants in affording protection. 1,2,4-Benzenetriol induces scission in supercoiled phage DNA in neutral aqueous solution with an effective dose (ED(50)) of 6.7 microM for 50% cleavage of 2.05 microg/ml supercoiled PM2 DNA. In decreasing order of effectiveness: catalase (20 U/ml), formate (25 mM), superoxide dismutase (20 U/ml), and mannitol (50 mM) protected, from 85 to 28%. Evidently, H(2)O(2) is the dominant active species, with O(2)(*)(-) and *OH playing subordinate roles. Desferrioxamine or EDTA inhibited DNA breakage by 81-85%, despite accelerating 1,2,4-benzenetriol autoxidation. Consistent with this suggestion of a crucial role for metals, addition of cupric, cuprous, ferric, or ferrous ions enhanced DNA breakage, with copper being more active than iron. Combinations of scavengers protected more effectively than any single scavenger alone, with implications for antioxidants acting in concert in living cells. Synergistic combinations were superoxide dismutase with *OH scavengers, superoxide dismutase with desferrioxamine, and catalase with desferrioxamine. Antagonistic (preemptive) combinations were catalase with superoxide dismutase, desferrioxamine with *OH scavengers, and catalase with *OH scavengers. The most striking aspect of synergism was the extent to which metal chelation (desferrioxamine) acted synergistically with either catalase or superoxide dismutase to provide virtually complete protection. Concluding, 1,2,4-benzenetriol-induced DNA damage occurs mainly by site-specific, Fenton-type mechanisms, involving synergism between several reactive intermediates. Multiple antioxidant actions are needed for effective protection.  相似文献   

4.
* Cadmium (Cd(2+)) is an environmental pollutant that causes increased reactive oxygen species (ROS) production. To determine the site of ROS production, the effect of Cd(2+) on ROS production was studied in isolated soybean (Glycine max) plasma membranes, potato (Solanum tuberosum) tuber mitochondria and roots of intact seedlings of soybean or cucumber (Cucumis sativus). * The effects of Cd(2+) on the kinetics of superoxide (O2*-), hydrogen peroxide (H(2)O(2)) and hydroxyl radical ((*OH) generation were followed using absorption, fluorescence and spin-trapping electron paramagnetic resonance spectroscopy. * In isolated plasma membranes, Cd(2+) inhibited O2*- production. This inhibition was reversed by calcium (Ca(2+)) and magnesium (Mg(2+)). In isolated mitochondria, Cd(2+) increased and H(2)O(2) production. In intact roots, Cd(2+) stimulated H(2)O(2) production whereas it inhibited O2*- and (*)OH production in a Ca(2+)-reversible manner. * Cd(2+) can be used to distinguish between ROS originating from mitochondria and from the plasma membrane. This is achieved by measuring different ROS individually. The immediate (相似文献   

5.
NADPH oxidases are major sources of superoxide (O2*-) and hydrogen peroxide (H2O2) in vascular cells. Production of these reactive oxygen species (ROS) is essential for cell proliferation and differentiation, while ROS overproduction has been implicated in hypertension and atherosclerosis. It is known that the heme-containing catalytic subunits Nox1 and Nox4 are responsible for oxygen reduction in vascular smooth muscle cells from large arteries. However, the exact mechanism of ROS production by NADPH oxidases is not completely understood. We hypothesized that Nox1 and Nox4 play distinct roles in basal and angiotensin II (AngII)-stimulated production of O2*- and H2O2. Nox1 and Nox4 expression in rat aortic smooth muscle cells (RASMCs) was selectively reduced by treatment with siNox4 or antisense Nox1 adenovirus. Production of O2*- and H2O2 in intact RASMCs was analyzed by dihydroethidium and Amplex Red assay. Activity of NADPH oxidases was measured by NADPH-dependent O2*- and H2O2 production using electron spin resonance (ESR) and 1-hydroxy-3-carboxypyrrolidine (CPH) in the membrane fraction in the absence of cytosolic superoxide dismutase. It was found that production of O2*- by quiescent RASMC NADPH oxidases was five times less than H2O2 production. Stimulation of cells with AngII led to a 2-fold increase of O2*- production by NADPH oxidases, with a small 15 to 30% increase in H2O2 formation. Depletion of Nox4 in RASMCs led to diminished basal H2O2 production, but did not affect O2*- or H2O2 production stimulated by AngII. In contrast, depletion of Nox1 in RASMCs inhibited production of O2*- and AngII-stimulated H2O2 in the membrane fraction and intact cells. Our data suggest that Nox4 produces mainly H2O2, while Nox1 generates mostly O2*- that is later converted to H2O2. Therefore, Nox4 is responsible for basal H2O2 production, while O2*- production in nonstimulated and AngII-stimulated cells depends on Nox1. The difference in the products generated by Nox1 and Nox4 may help to explain the distinct roles of these NADPH oxidases in cell signaling. These findings also provide important insight into the origin of H2O2 in vascular cells, and may partially account for the limited pharmacological effect of antioxidant treatments with O2*- scavengers that do not affect H2O2.  相似文献   

6.
To reveal whether reactive oxygen species (ROS) play a role after spinal cord injury, we developed a unique method for assaying hydrogen peroxide (H2O2) and determined the time course of its concentration changes following impact injury to the rat spinal cord. Microdialysis was used to sample H2O2 in the extracellular space and the dialysates were collected into a vial containing salicylate and ferrous chloride (FeCl2). H2O2 collected in the vial was converted to hydroxyl radicals (*OH) by FeCl2 catalysis. 2,3- and 2,5-dihydroxybenzoic acid produced by reaction of *OH with salicylate in the collecting vial were measured by HPLC and calibrated to H2O2 concentrations. The postinjury levels of H2O2 were significantly increased (p = 0.02) for over 11 h. FeCl2 administered through the dialysis fiber catalyzes H2O2 conversion in the cord to *OH. This *OH does not reach the collecting vial due to its extremely short lifetime (nanoseconds). The reduced H2O2 levels in the vials validate the measurement of H2O2. The relatively long-lasting formation of H2O2 and superoxide reported herein and previously suggests that ROS may be important in secondary spinal cord damage and that removal of ROS may be a realistic treatment strategy for reducing injury caused by free radicals.  相似文献   

7.
Iron and copper toxicity has been presumed to involve the formation of hydroxyl radical (*OH) from H2O2 in the Fenton reaction. The aim of this study was to verify that Fe2+-O2 and Cu+-O2 chemistry is capable of generating *OH in the quasi physiological environment of Krebs-Henseleit buffer (KH), and to compare the ability of the Fe2+-O2 system and of the Fenton system (Fe2+ + H2O2) to produce *OH. The addition of Fe2+ and Cu+ (0-20 microM) to KH resulted in a concentration-dependent increase in *OH formation, as measured by the salicylate method. While Fe3+ and Cu2+ (0-20 microM) did not result in *OH formation, these ions mediated significant *OH production in the presence of a number of reducing agents. The *OH yield from the reaction mediated by Fe2+ was increased by exogenous Fe3+ and Cu2+ and was prevented by the deoxygenation of the buffer and reduced by superoxide dismutase, catalase, and desferrioxamine. Addition of 1 microM, 5 microM or 10 microM Fe2+ to a range of H2O2 concentrations (the Fenton system) resulted in a H2O2-concentration-dependent rise in *OH formation. For each Fe2+ concentration tested, the *OH yield doubled when the ratio [H2O2]:[Fe2+] was raised from zero to one. In conclusion: (i) Fe2+-O2 and Cu+-O2 chemistry is capable of promoting *OH generation in the environment of oxygenated KH, in the absence of pre-existing superoxide and/or H2O2, and possibly through a mechanism initiated by the metal autoxidation; (ii) The process is enhanced by contaminating Fe3+ and Cu2+; (iii) In the presence of reducing agents also Fe3+ and Cu2+ promote the *OH formation; (iv) Depending on the actual [H2O2]:[Fe2+] ratio, the efficiency of the Fe2+-O2 chemistry to generate *OH is greater than or, at best, equal to that of the Fe2+-driven Fenton reaction.  相似文献   

8.
The recent increase of ultraviolet (UV) rays on Earth due to the increasing size of the ozone hole is suggested to be harmful to life and to accelerate premature photoaging of the skin. The detrimental effects of UV radiation on the skin are associated with the generation of reactive oxygen species (ROS) such as superoxide anion radical (*O(-)(2)), hydrogen peroxide (H(2)O(2)), hydroxyl radical (*OH), and singlet oxygen ((1)O(2)). However, direct proof of such ROS produced in the skin under UV irradiation has been elusive. In this study, we report first in vivo detection and imaging of the generated ROS in the skin of live mice following UVA irradiation, in which both a sensitive and specific chemiluminescence probe (CLA) and an ultralow-light-imaging apparatus with a CCD camera were used. In addition, we found that *O(-)(2) is formed spontaneously and (1)O(2) is generated in the UVA-irradiated skin. This method should be useful not only for noninvasive investigation of the spatial distribution and quantitative determination of ROS in the skin of live animals, but also for in vivo evaluation of the protective ability of free radical scavengers and antioxidants.  相似文献   

9.
DNA damage in arsenite- and cadmium-treated bovine aortic endothelial cells   总被引:19,自引:0,他引:19  
Reactive oxygen species have been shown to be involved in the mutagenicity, clastogenicity, and apoptosis of mammalian cells treated with arsenic or cadmium. As these endpoints require several hours of cellular processing, it is not clear that reactive oxygen species damage DNA directly or interfere with DNA replication and repair. Using single-cell alkaline electrophoresis, we have detected DNA strand breaks (DSBs) in bovine aortic endothelial cells by a 4-h treatment with sodium arsenite (As) and cadmium chloride (Cd) in sublethal concentrations. As-induced DSBs could be decreased by nitric oxide (NO) synthase inhibitors, superoxide scavengers, and peroxynitrite scavengers and could be increased by superoxide generators and NO generators. Treatment with As also increased nitrite production. These results suggest that As-increased NO may react with O2*- to produce peroxynitrite and cause DNA damage. The results showing that Cd increased cellular H2O2 levels and that Cd-induced DSBs could be modulated by various oxidant modulators suggest that Cd may induce DSBs via O2*-, H2O2, and *OH. Nevertheless, the DSBs in both As- and Cd-treated cells seem to come from the excision of oxidized bases such as formamidopyrimidine and 8-oxoguanine, as the Escherichia coli enzyme formamidopyrimidine-DNA glycosylase (Fpg) increased DSBs in cells treated with As, 3-morpholinosydnonimine (a peroxynitrite-generating agent), Cd, or H2O2.  相似文献   

10.
Scission of polysaccharides by peroxidase-generated hydroxyl radicals   总被引:2,自引:0,他引:2  
Cell-wall polysaccharides can be broken down non-enzymatically in vitro by scission of backbone bonds in a Fenton reaction system producing hydroxyl radicals (OH*) (Fry, S.C. (1998). Biochemical Journal, 332, 507-515). OH* can also be generated enzymatically from O2 by horseradish peroxidase (HRP) in a complex reaction cycle involving NADH or dihydroxyfumarate (DHF) as reducing substrate (Chen, S.-X., & Schopfer, P. (1999). European Journal of Biochemistry, 260, 726-735). Based on these recent findings the possibility that HRP can be used to degrade cell-wall polysaccharides in vitro was investigated. The production of OH* from O2 by HRP in the presence of NADH or DHF was confirmed by EPR spectroscopy using 5,5-dimethyl-1-pyrroline-N-oxide as a spin trap. Chemical scission of polysaccharides (dextran, pectin, xyloglucan) by HRP-generated OH* was demonstrated using a viscometric assay. The reaction could be inhibited by an array of OH* scavengers, confirming the involvement OH* as the causative agent for macromolecule cleavage. The significance of these findings for the biochemical function of peroxidase in cell-wall loosening processes underlying cell expansion and related physiological processes is discussed.  相似文献   

11.
Hemoglobin (Hb) solution-based blood substitutes are being developed as oxygen-carrying agents for the prevention of ischemic tissue damage and low blood volume-shock. However, the cell-free Hb molecule has intrinsic toxicity to the tissue since harmful reactive oxygen species (ROS) are readily produced during autoxidation of Hb from the ferrous state to the ferric state, and the cell-free Hb also causes distortion in the oxidant/antioxidant balance in the tissues. There may be further hindering dangers in the use of free Hb as a blood substitute. It has been reported that Hb has peroxidase-like activity oxidizing peroxidase substrates such as aromatic amines. Here we observed the Hb-catalyzed ROS production coupled to oxidation of a neurotransmitter precursor, beta-phenylethylamine (PEA). Addition of PEA to Hb solution resulted in generation of superoxide anion (O2*-). We also observed that PEA increases the Hb-catalyzed monovalent oxidation of ascorbate to ascorbate free radicals (Asc'). The O2*- generation and Asc formation were detected by O2*--specific chemiluminescence of the Cypridina lucigenin analog and electron spin resonance spectroscopy, respectively. PEA-dependent O2*- production and monovalent oxidation of ascorbate in the Hb solution occurred without addition of H2O2, but a trace of H2O2 added to the system greatly increased the production of both O2*- and Asc*. Addition of GSH completely inhibited the PEA-dependent production of O2*- and Asc* in Hb solution. We propose that the O2*- generation and Asc* formation in the Hb solution are due to the pseudoperoxidase activity-dependent oxidation of PEA and resultant ROS may damage tissues rich in monoamines, if the Hb-based blood substitutes were circulated without addition of ROS scavengers such as thiols.  相似文献   

12.
采用不同的活性氧发生源, 研究了· 、H2O2和OH·胁迫下Bacillus sp. F26以抗氧化物酶合成为特征的应激响应。结果表明, 细胞对氧胁迫的应激响应程度取决于活性氧种类、胁迫程度和形式(瞬时和持续)。Bacillus sp. F26对H2O2胁迫的响应程度最高, 过氧化氢酶的快速合成对细胞抵抗H2O2胁迫至关重要, 当细胞及时分解进入胞内的H2O2, 胁迫对细胞的氧化损伤程度并不高, 相反会刺激细胞的生长和底物消耗, 当胁迫超过过氧化氢酶的分解能力时, H2O2会迅速抑制细胞生长和过氧化氢酶合成; 由于 ·与细胞作用的方式和效果与H2O2不同, 超氧化物歧化酶和过氧化氢酶的快速合成并不能保证细胞及时有效地清除胞内的活性氧, 因此, 细胞对 ·胁迫的响应程度要低于H2O2胁迫; 在所考察的3种活性氧中, OH·胁迫(Fenton反应体系)对细胞的氧化损伤程度最大, 胁迫强烈地抑制了细胞生长和抗氧化物酶的合成。由此表明, 由于不同活性氧的化学性质有所不同, 细胞对不同种类、程度和形式的活性氧胁迫会表现出不同的生物学效应, 为了提高自身对氧胁迫的抵抗能力, 微生物会通过自身的代谢调节适应新的环境, 包括调整抗氧化物酶合成水平、改变生长速度以及底物消耗速率等。  相似文献   

13.
Park WH  Han YW  Kim SH  Kim SZ 《Mutation research》2007,619(1-2):81-92
We investigated the involvement of ROS such as H2O2 and O2*-, and GSH in As4.1 cell death induced by pyrogallol. The intracellular H2O2 levels were decreased or increased depending on the concentration and incubation time of pyrogallol. The levels of O2*- were significantly increased. Pyrogallol reduced the intracellular GSH content. And ROS scavengers, Tempol, Tiron, Trimetazidine and NAC could not significantly down-regulate the production of H2O2 and O2*-. However, these ROS scavengers slightly inhibited apoptosis. Interestingly, Tempol showing the recovery of GSH depletion induced by pyrogallol significantly decreased apoptosis without the significant reduction of intracellular O2*- levels. SOD and catalase did not change the level of H2O2 but decreased the level of O2*-. The inhibition of GSH depletion by these was accompanied with the decrease of apoptosis, as evidenced by sub-G1 DNA content, annexin V staining, mitochondria membrane potential (DeltaPsi(m)) and Western data. In addition, ROS scavengers and SOD did not alter a G2 phase accumulation of the cell cycle induced by pyrogallol. However, catalase changed the cell cycle distributions of pyrogallol-treated cells to those of pyrogallol-untreated cells. In summary, we have demonstrated that pyrogallol potently generates ROS, especially O2*-, in As4.1 JG cells, and Tempol, SOD and catalase could rescue to a lesser or greater extent cells from pyrogallol-induced apoptosis through the up-regulation of intracellular GSH content.  相似文献   

14.
15.
Content of reactive oxygen species (ROS): O2*-, H2O2 and OH* as well as activities of antioxidant enzymes: superoxide dismutase (SOD), guaiacol peroxidase (POX) and catalase (CAT) were studied in leaves of Arabidopsis thaliana ecotype Columbia, treated with Cu excess (0, 5, 25, 30, 50, 75, 100, 150 and 300 microM). After 7 days of Cu action ROS content and the activity of SOD and POX increased, while CAT activity decreased in comparison with control. Activities of SOD, POX and CAT were correlated both with Cu concentration (0-75 microM) in the growth medium and with OH* content in leaves. Close correlation was also found between OH* content and Cu concentration. Oxidative stress in A. thaliana under Cu treatment expressed in elevated content of O2*-, H2O2 and OH* in leaves. To overcome it very active the dismutase- and peroxidase-related (and not catalase-related, as in other plants) ROS scavenging system operated in A. thaliana. Visual symptoms of phytotoxicity: chlorosis, necrosis and violet colouring of leaves as well as a reduction of shoot biomass occurred in plants.  相似文献   

16.
We have compared various mitogenic stimuli for their ability to induce hydrogen peroxide (H2O2) and superoxide anion (O2-) production by PBMC and the effect of these reactive oxygen species and hydroxyl radical (OH.) has been assessed on proliferation. Our results show that pokeweed mitogen (PWM) stimulated PBMC to release H2O2 which interfered with proliferation since inclusion of catalase enhanced PBMC thymidine uptake. In contrast, phytohemagglutinin (PHA) and monoclonal antibody to CD3 (alpha CD3) did not induce PBMC to generate H2O2. O2- release by PBMC, which is readily induced by phorbol myristate acetate (PMA), did not occur when the cells were stimulated with PWM, PHA, or alpha CD3. In correlation, the O2- scavenger enzyme superoxide dismutase (SOD) had no effect on the proliferative response of the cells to the same mitogens, whereas it impaired the thymidine uptake of PMA-stimulated PBMC. A regulatory role for OH. was implied by studies using a battery of OH scavengers known to inhibit PMA-stimulated PBMC proliferation. OH. scavengers markedly inhibited the lymphoblastic transformation of alpha CD3-stimulated cells but had little or no effect on PHA- and PWM-stimulated PBMC. Thus, one manner by which PBMC proliferation is regulated is through oxygen free radical production which varies depending on the type of mitogenic stimulus.  相似文献   

17.
We recently reported that capsaicin (CAP) is capable of scavenging peroxyl radicals derived from 2,2'-azobis(2,4-dimethylvaleronitrile) as measured by electron spin resonance (ESR) spectroscopy. The present study describes the hydroxyl radical (HO*) scavenging ability of CAP as measured by DNA strand scission assay and by an ESR spin trapping technique with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The Fenton reaction [Fe(II)+ H(2)O(2) --> Fe(III) + HO* + HO(-)] was used as a source of HO*. The incubation of DNA with a mixture of FeSO(4) and H(2)O(2) caused DNA strand scission. The addition of CAP to the incubation mixture decreased the strand scission in a concentration-dependent manner. To understand the antioxidative mechanism of CAP, we used an ESR spin trapping technique. Kinetic competition studies using different concentrations of DMPO indicated that the decrease of the oxidative DNA damage was mainly due to the scavenging of HO* by CAP, not to the inhibition of the HO* generation system itself. We estimated the second order rate constants in the reaction of CAP and common HO* scavengers with HO* by kinetic competition studies. By comparison with the common HO* scavengers, CAP was found to scavenge HO* more effectively than mannitol, deoxyribose and ethanol, and to be equivalent to DMSO and benzoic acid, demonstrating that CAP is a potent HO* scavenger. The results suggest that CAP may act as an effective HO* scavenger as well as a peroxyl radical scavenger in biological systems.  相似文献   

18.
紫外A(UVA,320 nm-400 nm)诱发的脂质过氧化反应是通过活性氧(ROS)介导的。在UVA照射之后,单线态氧(1O2)和超氧阴离子(O2-.)是细胞内最初产生的ROS,它们进一步生成过氧化氢(H2O2),羟自由基(.OH)等其它自由基。为了探讨UVA照射后最早生成的1O2和O2-.与细胞氧化损伤后果的关系,我们采用一种特异性检测1O2和O2-.的高灵敏度化学发光探针MCLA(2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimid-azo[1,2-α]pyrazin-3-one hydrochloride)检测人外周血淋巴细胞经UVA照射后的化学发光变化。发现不同剂量UVA照射后,细胞MCLA化学发光变化和MDA浓度变化一致。结果表明UVA照射后1O2和O2-.的水平与由此引发的脂质过氧化损伤存在正相关关系。因此,MCLA化学发光方法可望作为一种检测UVA诱发脂质过氧化水平的简单快速方法。  相似文献   

19.
The formation of hydroxyl radicals (OH*) by peroxidase was confirmed by EPR spectroscopy using ethanol/alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone as a spin-trapping system specific of OH*. The effect of OH*, generated either non-enzymatically with the Fenton reaction (H(2)O(2) + Fe(2+)) or with horseradish peroxidase in the presence of O(2) and NADH, on cell walls isolated from maize (Zea mays) coleoptiles or soybean (Glycine max) hypocotyls was investigated. OH* produced by these reactions attack polysaccharides in the wall, demonstrated by the release of a heterogeneous mixture of polymeric breakdown products into the incubation medium. The peroxidase-catalyzed degradation of cell-wall polysaccharides can be inhibited by KCN and superoxide radical (O(2)*) or OH* scavengers. These data support the hypothesis that OH*, produced by cell-wall peroxidases in vivo, act as wall-loosening agents in plant extension growth.  相似文献   

20.
The aim of the study was to investigate the reactive oxygen species (ROS) production in the hypoxanthine-xanthinoxidase (HX-XO), hydrogen peroxide-ferrous sulphate (H2O2-FeSO4) and hydrogen peroxide (H2O2) systems by using various concentrations of ROS scavengers, such as superoxide dismutase (SOD), dimethylthiourea (DMTU) or catalase (CAT). Luminol (0.8 mmol/L) was dissolved in a borate buffer, pH 9.0, and was used as a luminophor in the chemiluminescence (CL) measurements. In the HX-XO system SOD, CAT and DMTU deepened the CL signal, whereas in the H2O2-FeSO4 system, only CAT and DMTU deepened the CL signal, and in the H2O2 system SOD and CAT increased and DMTU deepened the CL signal. Electron spin resonance (ESR) measurements were performed only in the H2O2-FeSO4 system. 5,5-dimethyl-pyrroline-N-oxide (DMPO) was used as a spin trap. According to typical ESR spectra, .OH was produced in this chemical system. It can be concluded that the chemical systems do not produce single reactive oxygen species but a mixture of them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号