首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 295 毫秒
1.
Lipid peroxidation in kidney of rats fed with vitamin B-6 deficient diet for a period of 12 weeks was studied with pair-fed controls. The basal lipid peroxide level as well as the degree of susceptibility to lipid peroxidation in presence of promotors such as NADPH, ascorbate, t-butyl hydroperoxide, Fe2+, Cu2+ and oxalate, were increased in vitamin B-6 deficient kidney. The observed increased lipid peroxidation in vitamin B-6 deficient kidney was correlated with high levels of lipids, copper, iron, calcium and oxalate, low levels of antioxidants and antioxidant enzymes and increased levels of hydroperoxides and hydroxyl radicals.  相似文献   

2.
Folate and homocysteine metabolism in copper-deficient rats.   总被引:2,自引:0,他引:2  
To investigate the effect of copper deficiency on folate and homocysteine metabolism, we measured plasma, red-cell and hepatic folate, plasma homocysteine and vitamin B-12 concentrations, and hepatic methionine synthase activities in rats. Two groups of male Sprague-Dawley rats were fed semi-purified diets containing either 0. 1 mg (copper-deficient group) or 9.2 mg (control group) of copper per kg. After 6 weeks of dietary treatment, copper deficiency was established as evidenced by markedly decreased plasma and hepatic copper concentrations in rats fed the low-copper diet. Plasma, red-cell, hepatic folate, and plasma vitamin B-12 concentrations were similar in both groups, whereas plasma homocysteine concentrations in the copper-deficient group were significantly higher than in the control group (P<0.05). Copper deficiency resulted in a 21% reduction in hepatic methionine synthase activity as compared to the control group (P<0.01). This change most likely caused the increased hepatic 5-methyltetrahydrofolate and plasma homocysteine concentrations in the copper-deficient group. Our results indicate that hepatic methionine synthase may be a cuproenzyme, and plasma homocysteine concentrations are influenced by copper nutriture in rats. These data support the concept that copper deficiency can be a risk factor for cardiovascular disease.  相似文献   

3.
1. Polyamine concentrations were decreased in rats fed on a diet deficient in vitamin B-6. 2. Ornithine decarboxylase activity was decreased by vitamin B-6 deficiency when assayed in tissue extracts without addition of pyridoxal phosphate, but was greater than in control extracts when pyridoxal phosphate was present in saturating amounts. 3. In contrast, the activity of S-adenosylmethionine decarboxylase was not enhanced by pyridoxal phosphate addition even when dialysed extracts were prepared from tissues of young rats suckled by mothers fed on the vitamin B-6-deficient diet. 4. S-Adenosylmethionine decarboxylase activities were increased by administration of methylglyoxal bis(guanylhydrazone) (1,1'-[(methylethanediylidine)dinitrilo]diguanidine) to similar extents in both control and vitamin B-6-deficient animals. 5. The spectrum of highly purified liver S-adenosylmethionine decarboxylase did not indicate the presence of pyridoxal phosphate. After inactivation of the enzyme by reaction with NaB3H4, radioactivity was incorporated into the enzyme, but was not present as a reduced derivative of pyridoxal phosphate. 6. It is concluded that the decreased concentrations of polyamines in rats fed on a diet containing vitamin B-6 may be due to decreased activity or ornithine decarboxylase or may be caused by an unknown mechanism responding to growth retardation produced by the vitamin deficiency. In either case, measurements of S-adenosylmethionine decarboxylase and ornithine decarboxylase activity under optimum conditions in vitro do not correlate with the polyamine concentrations in vivo.  相似文献   

4.
Weanling and perinatal rats were rendered vitamin B-6 (pyridoxine)-deficient. The rat pups were nursed from vitamin B-6-deficient or -sufficient dams and were killed at day 15 after parturition. The weanling rats were fed vitamin B-6-deficient or -sufficient diets and were killed after 5 weeks of treatment. Lung elastin from the groups of rats was then studied with respect to its content of lysine-derived cross-linking amino acids. Lung lysyl oxidase activity was also measured. B-6 deficiency decreased the number of lysine residues in elastin that were converted into the cross-linking amino acid precursor allysine. However, a more significant defect in cross-link formation was an apparent block in the condensation steps leading to the formation of desmosine. Desmosine was decreased, with an increase in the amounts of aldol condensation products (aldol CP) in elastin. It is proposed that the elevation in aldol CP results from the formation of thiazines, which are produced from the reaction between aldehyde and homocysteine. The concentration of homocysteine is significantly elevated in vitamin B-6-deficient rats.  相似文献   

5.
We have measured the postnatal development and GABA modulation of benzodiazepine receptors in neuronal membranes from vitamin B-6 deficient and normal rats. In rats fed vitamin B-6 adequate and deficient diets there were age-dependent changes in [3H]flunitrazepam binding site affinity and in the number of binding sites. Vitamin B-6 deficiency produced a significant reduction in the potency of GABA to enhance [3H]flunitrazepam binding to cortical membranes prepared from 14 day old rats. These results suggests an uncoupling of the GABAa/benzodiazepine receptor at a developmental period when the animals are most susceptible to spontaneous seizures.  相似文献   

6.
Marginal deficiency of vitamin B-6 is common among segments of the population worldwide. Because pyridoxal 5′-phosphate (PLP) serves as a coenzyme in the metabolism of amino acids, carbohydrates, organic acids, and neurotransmitters, as well as in aspects of one-carbon metabolism, vitamin B-6 deficiency could have many effects. Healthy men and women (age: 20-40 y; n = 23) were fed a 2-day controlled, nutritionally adequate diet followed by a 28-day low-vitamin B-6 diet (<0.5 mg/d) to induce marginal deficiency, as reflected by a decline of plasma PLP from 52.6±14.1 (mean ± SD) to 21.5±4.6 nmol/L (P<0.0001) and increased cystathionine from 131±65 to 199±56 nmol/L (P<0.001). Fasting plasma samples obtained before and after vitamin B6 restriction were analyzed by 1H-NMR with and without filtration and by targeted quantitative analysis by mass spectrometry (MS). Multilevel partial least squares-discriminant analysis and S-plots of NMR spectra showed that NMR is effective in classifying samples according to vitamin B-6 status and identified discriminating features. NMR spectral features of selected metabolites indicated that vitamin B-6 restriction significantly increased the ratios of glutamine/glutamate and 2-oxoglutarate/glutamate (P<0.001) and tended to increase concentrations of acetate, pyruvate, and trimethylamine-N-oxide (adjusted P<0.05). Tandem MS showed significantly greater plasma proline after vitamin B-6 restriction (adjusted P<0.05), but there were no effects on the profile of 14 other amino acids and 45 acylcarnitines. These findings demonstrate that marginal vitamin B-6 deficiency has widespread metabolic perturbations and illustrate the utility of metabolomics in evaluating complex effects of altered vitamin B-6 intake.  相似文献   

7.
Carnitine metabolism in the vitamin B-12-deficient rat.   总被引:4,自引:1,他引:3       下载免费PDF全文
In vitamin B-12 (cobalamin) deficiency the metabolism of propionyl-CoA and methylmalonyl-CoA are inhibited secondarily to decreased L-methylmalonyl-CoA mutase activity. Production of acylcarnitines provides a mechanism for removing acyl groups and liberating CoA under conditions of impaired acyl-CoA utilization. Carnitine metabolism was studied in the vitamin B-12-deficient rat to define the relationship between alterations in acylcarnitine generation and the development of methylmalonic aciduria. Urinary excretion of methylmalonic acid was increased 200-fold in vitamin B-12-deficient rats as compared with controls. Urinary acylcarnitine excretion was increased in the vitamin B-12-deficient animals by 70%. This increase in urinary acylcarnitine excretion correlated with the degree of metabolic impairment as measured by the urinary methylmalonic acid elimination. Urinary propionylcarnitine excretion averaged 11 nmol/day in control rats and 120 nmol/day in the vitamin B-12-deficient group. The fraction of total carnitine present as short-chain acylcarnitines in the plasma and liver of vitamin B-12-deficient rats was increased as compared with controls. When the rats were fasted for 48 h, relative or absolute increases were seen in the urine, plasma, liver and skeletal-muscle acylcarnitine content of the vitamin B-12-deficient rats as compared with controls. Thus vitamin B-12 deficiency was associated with a redistribution of carnitine towards acylcarnitines. Propionylcarnitine was a significant constituent of the acylcarnitine pool in the vitamin B-12-deficient animals. The changes in carnitine metabolism were consistent with the changes in CoA metabolism known to occur with vitamin B-12 deficiency. The vitamin B-12-deficient rat provides a model system for studying carnitine metabolism in the methylmalonic acidurias.  相似文献   

8.
It is generally believed that the zinc metalloenzyme alkaline phosphatase is required to hydrolyze phosphorylated forms of vitamin B-6 prior to their use. To test this hypothesis, rats were fed a liquid diet containing either adequate or moderately low zinc during gestation and lactation. Zinc deficiency was produced in dams evidenced by significant reductions in zinc concentration of plasma (49%), liver (25%), and femur (24%), and plasma alkaline phosphatase activity (48%). Plasma pyridoxal-5′-phosphate (PLP), which significantly increased (61%) in these same rats, was negatively correlated (r=−0.74,P<0.02) with plasma alkaline phosphatase activity. Maternal liver PLP concentration was unaffected by zinc status. The zinc and vitamin B-6 relationship seen in dams was less observable in offspring. Stimulation of erythrocyte alanine aminotransferase activity by exogenously added PLP in vitro tended to be higher in both moderately zinc-deficient mothers and their offspring, but the difference was not significant. Our results support the hypothesis that alkaline phosphatase activity is required for the hydrolysis of plasma PLP. Our results also suggest that zinc status as alkaline phosphatase activity should be defined in an individual if plasma PLP is to be used as an indicator of vitamin B-6 status.  相似文献   

9.
Dietary cobalamin (vitamin B12; Cbl) deficiency caused significant increases in plasma serine, threonine, glycine, alanine, tyrosine, lysine and histidine levels in rats. In particular, the serine and threonine levels were over five and eight times, respectively, higher in the Cbl-deficient rats than those in the sufficient controls. In addition, some amino acids, including serine and threonine, were excreted into urine at significantly higher levels in the deficient rats. When Cbl was supplemented into the deficient rats for 2 weeks, in coincidence with the disappearance of the urinary excretion of methylmalonic acid (an index of Cbl deficiency), the plasma serine and threonine levels were normalized. These results indicate that Cbl deficiency results in metabolic disorder of certain amino acids, including serine and threonine. The expression level of hepatic serine dehydratase (SDH), which catalyzes the conversion of serine and threonine to pyruvate and 2-oxobutyrate, respectively, was significantly lowered by Cbl deficiency, even though Cbl does not participate directly in the enzyme reaction. The SDH activity in the deficient rats was less than 20% of that in the sufficient controls, and was normalized 2 weeks after the Cbl supplementation. It is thus suggested that the decrease of the SDH expression relates closely with the abnormalities in the plasma and urinary levels of serine and threonine in the Cbl-deficient rats.  相似文献   

10.
Dietary cobalamin (vitamin B12; Cbl) deficiency caused significant increases in plasma serine, threonine, glycine, alanine, tyrosine, lysine and histidine levels in rats. In particular, the serine and threonine levels were over five and eight times, respectively, higher in the Cbl-deficient rats than those in the sufficient controls. In addition, some amino acids, including serine and threonine, were excreted into urine at significantly higher levels in the deficient rats. When Cbl was supplemented into the deficient rats for 2 weeks, in coincidence with the disappearance of the urinary excretion of methylmalonic acid (an index of Cbl deficiency), the plasma serine and threonine levels were normalized. These results indicate that Cbl deficiency results in metabolic disorder of certain amino acids, including serine and threonine. The expression level of hepatic serine dehydratase (SDH), which catalyzes the conversion of serine and threonine to pyruvate and 2-oxobutyrate, respectively, was significantly lowered by Cbl deficiency, even though Cbl does not participate directly in the enzyme reaction. The SDH activity in the deficient rats was less than 20% of that in the sufficient controls, and was normalized 2 weeks after the Cbl supplementation. It is thus suggested that the decrease of the SDH expression relates closely with the abnormalities in the plasma and urinary levels of serine and threonine in the Cbl-deficient rats.  相似文献   

11.
The metabolism of [6-3H]pyridoxine - HCl was investigated in the liver of vitamin B-6-deficient rats. Rats were made vitamin B-6 deficient by feeding ad libitum for 42 days a diet lacking pyridoxine but otherwise optimal. Animals were each injected intraperitoneally with 33 muCi of [6-3H] pyridoxine - HCl and killed at different time intervals afterwards up to 7 days. Radioactively labeled hepatic B-6 compounds were extracted with acid and chromatographically separated on Dowex-X8 (H+) columns and the percent radioactivity for each vitamin compound was then calculated. Maximal uptake in control and deficient animals was observed 30 and 60 min, respectively, after administration of label. Radioactivity was not retained by the control animals but decreased steadily in a linear fashion after 30 min, reaching a low level after 3 h. On the other hand, vitamin deficient animals accumulated almost twice as much radioactivity in their liver as the controls and retained it through 7 days. In vitamin B-6 deficient animals 93% of the injected radioactivity was metabolized within 2 min at which time pyridoxine 5'-P and pyridoxal 5'-P reached 36 and 44% levels, respectively. Pyridoxine 5'-P dropped to minimal values (3%) within 15 min and remained unchanged for 7 days while pyridoxal 5'-P reached a peak (79%) level at 15 min and then began to drop linearly reaching a plateau (29%) at 5 days. Further, as the level of pyridoxal 5-P was falling, pyridoxamine 5'-P was linearly synthesized reaching a platuau low level (3%). The specific activity level of pyridoxal kinase decreased 3.2 times and that of pyridoxine 5'-phosphate oxidase increased 1.5 times in the state of deficiency. The results presented show that metabolism of [3H]pyridoxine in deficiency is characterized by (a) a delayed, two-fold increase in label uptake as well as an extended label retention period, (b) a rapid pyridoxal 5'-P synthesis, and (c) a continuous synthesis (and accumulation) of pyridoxamine 5'-P which is not utilized or further metabolized.  相似文献   

12.
Although vitamin B6 deficiency is related to coronary heart disease, no information regarding changes in myocardium due to vitamin B6 deficiency is available in the literature. In view of the critical role played by Ca2+ in cellular function, we investigated alterations in [Ca2+]i induced by KCI or ATP in vitamin B6 deficient and age-matched control rats. [Ca2+]i was measured in isolated cardiomyocytes by using the Fura-2 fluorescence technique. The KC1-induced increase in [Ca2+]i was augmented in vitamin B6 deficient cardiomyocytes, whereas the ATP-induced increase in [Ca2+]i was attenuated. The specific ATP binding to sarcolemma from hearts of vitamin B6 deficient rats was decreased. A single injection of vitamin B6 (10 mg/kg) to vitamin B6 deficient animals completely reversed the KC1- or ATP-induced changes in [Ca2+]i in cardiomyocytes as well as ATP binding with sarcolemma. These results regarding altered regulation of [Ca2+]i in cardiomyocytes and sarcolemmal ATP receptors indicate myocardial abnormalities due to vitamin B6 deficiency.  相似文献   

13.
Synopsis Diets deficient in vitamin D effected a significant increase in plasma triiodothyronine (T3) concentration in raibow trout (Salmo gairdneri); different levels of dietary calcium exerted no effect on plasma T3 levels. These effects of vitamin D deficiency on plasma T3 levels appeared to be reversible, vitamin D supplementation after a period of vitamin D deficiency lowered T3 levels. Vitamin D3, vitamin D2 and the metabolites 25(OH)-D3 and 1, 25(OH)2D3 were all effective in lowering plasma T3 levels; vitamin D3 appeared to be more effective than vitamin D2. There appeared to be a correlation between weight gain and plasma T3 concentration in the groups fed different types and levels of vitamin D supplementation suggesting that the increased T3 levels may be a compensatory increase to the reduced weight gain of the vitamin D deficient fish. Plasma T4 levels were not affected by dietary vitamin D deficiency.  相似文献   

14.
Copper (Cu) deficiency decreases the activity of Cu-dependent antioxidant enzymes such as Cu,zinc-superoxide dismutase (Cu,Zn-SOD) and may be associated with increased susceptibility to oxidative stress. Iron (Fe) overload represents a dietary oxidative stress relevant to overuse of Fe-containing supplements and to hereditary hemochromatosis. In a study to investigate oxidative stress interactions of dietary Cu deficiency with Fe overload, weanling male Long–Evans rats were fed one of four sucrose-based modified AIN-93G diets formulated to differ in Cu (adequate 6 mg/kg diet vs. deficient 0.5 mg/kg) and Fe (adequate 35 mg/kg vs. overloaded 1500 mg/kg) in a 2×2 factorial design for 4 weeks prior to necropsy. Care was taken to minimize oxidation of the diets prior to feeding to the rats. Liver and plasma Cu content and liver Cu,Zn-SOD activity declined with Cu deficiency and liver Fe increased with Fe overload, confirming the experimental dietary model. Liver thiobarbituric acid reactive substances were significantly elevated with Fe overload (pooled across Cu treatments, 0.80±0.14 vs. 0.54±0.08 nmol/mg protein; P<.0001) and not affected by Cu deficiency. Liver cytosolic protein carbonyl content and the concentrations of several oxidized cholesterol species in liver tissue did not change with these dietary treatments. Plasma protein carbonyl content decreased in Cu-deficient rats and was not influenced by dietary Fe overload. The various substrates (lipid, protein and cholesterol) appeared to differ in their susceptibility to the in vivo oxidative stress induced by dietary Fe overload, but these differences were not exacerbated by Cu deficiency.  相似文献   

15.

Background/Aims

Normal or high serum vitamin B-12 levels can sometimes be seen in a B-12 deficient state, and can therefore be misleading. High levels of Methymalonic Acid (MMA) and Homocysteine (HC) have been identified as better indicators of B-12 deficiency than the actual serum B-12 level itself. We evaluated the prevalence of vitamin B-12 deficiency using appropriate cut-off levels of vitamin B-12, MMA and HC, and determined the relationship between serum levels of vitamin B-12, MMA and HC in cancer.

Methods

This is a cross-sectional study using a consecutive case series of 316 cancer patients first seen at Cancer Treatment Centers of America® (CTCA) at Midwestern Regional Medical Center between April 2014 and June 2014. All patients were evaluated at baseline for vitamin B-12 (pg/mL), MMA (nmol/L) and HC (μmol/L) levels. In accordance with previously published research, the following cut-offs were used to define vitamin B-12 deficiency: <300 pg/mL for vitamin B-12, >260 nmol/L for MMA and >12 μmol/L for HC. The relationship between B-12, MMA and HC was evaluated using Spearman''s rho correlation coefficient and cross-tabulation analysis. Receiver Operating Characteristic (ROC) curves were estimated using the non-parametric method to further evaluate the diagnostic accuracy of vitamin B-12 using Fedosov quotient as the "gold standard".

Results

Mean age at presentation was 52.5 years. 134 (42.4%) patients were males while 182 (57.6%) were females. Median vitamin B-12, MMA and HC levels were 582.5 pg/mL, 146.5 nmol/L and 8.4 μmol/L respectively. Of 316 patients, 28 (8.9%) were vitamin B-12 deficient based on vitamin B-12 (<300pg/mL), 34 (10.8%) were deficient based on MMA (>260 nmol/L) while 55 (17.4%) were deficient based on HC (>12 μmol/L). Correlation analysis revealed a significant weak negative correlation between vitamin B-12 and MMA (rho = -0.22) as well as B-12 and HC (rho = -0.35). ROC curves suggested MMA to have the best discriminatory power in predicting B-12 deficiency.

Conclusion

Vitamin B-12 is poorly correlated with MMA and HC in cancer. Using serum vitamin B-12 alone to evaluate B-12 status in cancer may fail to identify those with functional deficiency. A thorough clinical assessment is important to identify patients that may have risk factors and/or symptoms suggestive of deficiency. These patients should have additional testing of MMA and HC regardless of their B-12 levels.  相似文献   

16.
We evaluated whether nutritional vitamin A deficiency generates oxidative stress and inflammation in aorta. Wistar male rats (21 days old) were given free access to a control (8 mg retinol as retinyl palmitate/kg) or a vitamin A- deficient diet for three months. One group of deficient animals was fed with the control diet fifteen days before sacrifice. Thiobarbituric acid-reactive substances (TBARS) and nitrite concentration where both analyzed in serum and aorta. Aorta Copper-Zinc Superoxide dismutase (CuZnSOD), Glutathion peroxidase (GPx) and Catalase (CAT) activities were measured. In addition, binding activity of the nuclear factor- kB (NF-kB), inducible and endothelial Nitric Oxide synthase (iNOS and eNOS, respectively) and Ciclooxygenase-2 (COX-2) expressions were determinated in aorta. Rats fed the vitamin A- deficient diet were characterized by sub-clinical plasma retinol concentration and showed increased serum and aorta concentrations of TBARS compared to controls. Lower than control activities of CuZnSOD, GPx, and CAT were observed in aorta of the vitamin A- deficient group. The binding activity of NF- kB was higher in vitamin A- deficient animals than controls. In addition, NO production evaluated as nitrite concentration increased in aorta and serum, associated with a higher expression of iNOS, eNOS and COX-2 in aorta of vitamin A-deficient rats. The incorporation of vitamin A into the diet of vitamin A-deficient rats reverted the changes observed in TBARS level, CuZnSOD and GPx activities, nitrite concentration and also, iNOS, eNOS and COX-2 expression. Prooxidant environment and inflammation are induced by vitamin A deficiency in rat aorta.  相似文献   

17.
It is well known that a dietary restriction of vitamin B-6 during gestation and lactation produces spontaneous seizures in neonatal animals. Since pyridoxal phosphate, one of the biologically active forms of vitamin B-6, is the cofactor for GAD the neonatal seizures have been attributed to low levels of brain GABA as a result of cofactor depletion. Although GABA levels are significantly lower in B-6 restricted neonatal rats with spontaneous seizures, seizure activity is not present in B-6 deficient adult rats or 28 day old rats in the present study, despite significantly low levels of brain GABA. These facts suggest that depletion of GABA is not the only biochemical alteration essential for the emergence of seizures. In the present study, the effect of vitamin B-6 undernutrition on the concentrations of the neuroactive amino acids, Glu, Gly, Tau, and GABA was determined in selected regions of the developing rat brain. The results show that the concentrations of Glu, Tau, and GABA were significantly lower and GLY significantly higher in selected brain regions of the B-6 restricted 14 day old rat compared to control tissue. Most of these changes were unique to 14 days of age, the time when spontaneous seizures are observed, and not present at 28 or 56 days of age when seizures are absent. This pattern of amino acid changes in the brain and the magnitude of the changes was consistent with those measured in a variety of chemically-induced animal models of epilepsy and in human epileptic foci. The regional distribution of amino acid changes was associated with brain regions which have been suggested to be responsible for the initiation and propagation of seizure activity. Two unique findings were also made in this study. First, there was a regional brain heterogeneity in the age-associated loss of brain Tau concentrations with the pons/medulla and substantia nigra appearing to be highly vulnerable and the hippocampus quite resistant to the loss of Tau. A second finding was the normalization of the neonatal GABA deficit in most brain regions by 56 days of age. The normalization of brain GABA was present in the face of continued dietary vitamin B-6 restriction. In summary, this study shows that the neuroactive amino acids Glu, Gly, Tau, and GABA are markedly altered in the seizure-prone vitamin B-6 restricted neonatal rat brain. The alterations in the brain concentration of Glu, Gly, and Tau may play an equally important role as GABA in the underlying mechanism of seizures associated with this condition.Abbreviations GAD Glutamic acid decarboxylase - GABA gamma-aminobutyric acid - Glu glutamate - Gly glycine - Tau taurine - CNS central nervous system - CTX cortex - HIPP hippocampus - C/P caudate/putamen - SN substantia nigra - Cb cerebellum - P/M pons/medulla  相似文献   

18.
Lipid peroxidation in blood of vitamin B6 deficient rats was significantly increased when compared to pair-fed controls. The observed increased lipid peroxidation in vitamin B6 deficiency was correlated with high levels of lipids, metal ions and low levels of antioxidants, alpha-tocopherol, ascorbic acid and reduced GSH. Supplementation of methionine or vitamin E along with the vitamin B6 deficient diet restored the levels of antioxidants to near normal and also protected against oxidative stress. However plasma TBARS level as well as total lipids were still elevated in M-B6 diet fed rats and normalized in E-B6-d rats.  相似文献   

19.
In vitro inactivation of tyrosine aminotransferase at pH 7.0 did not occur in liver homogenates prepared from vitamin B-6-deficient rats, although it was previously demonstrated that the enzyme was inactivated in liver homogenates from vitamin B-6-adequate rats (R. D. Reynolds and S. D. Thompson, 1974, Arch. Biochem. Biophys.164, 43–51). Addition of 2 mm pyridoxine or pyridoxal-P to the incubated homogenate did not restore the inactivation, but injection of 1 mg of pyridoxine to deficient rats restored full inactivating activity by 12 h. All forms of vitamin B-6 injected restored inactivating activity in vitro. This effect appears to be specific for vitamin B-6, since no restoration of in vitro inactivation of tyrosine aminotransferase was observed following injection of riboflavin, thiamin, niacin, or folic acid. The restoration of inactivating activity in vitro following injection of pyridoxine was not inhibited by repeated injections of puromycin or cycloheximide. Apparently, in vivo protein synthesis is not required for the restoration of the in vitro inactivating activity. However, in vivo inactivation was similar in the vitamin B-6-adequate and -deficient rats. Inactivating activity is present in homogenates of liver and kidney, but not of abdominal muscle, small intestine, heart, testes, whole blood, or erythrocyte ghosts, and is found only in the plasma membrane fraction of liver. Similar to liver, the activity in the kidney homogenate requires the presence of l-cysteine and depends upon the vitamin B-6 status of the animal. Rapid inactivation in the liver occurs between pH 6.75 and 7.75 (final pH), with minimal inactivation above or below this range. No inhibition of inactivation was observed with homogenates incubated in the presence of several protease inhibitors.  相似文献   

20.
The effects of vitamin B(6) deficiency on metabolic activities of brain structures were studied. Male Sprague-Dawley weanling rats received one of the following diets: (1) 7 mg pyridoxine HCl/kg (control group); (2) 0 mg pyridoxine HCl/kg (vitamin B(6)-deficient group); or (3) 7 mg pyridoxine HCl/kg with food intake restricted in quantity to that consumed by the deficient group (pair-fed control group). After 8 weeks of dietary treatment, rats in all three groups received an intravenous injection of 2-deoxy-[(14)C] glucose (100 microCi/kg). Vitamin B(6) status was evaluated by plasma pyridoxal 5'-phosphate concentrations. The vitamin B(6)-deficient group had significantly lower levels of plasma pyridoxal 5'-phosphate than did the control and pair-fed groups. The local cerebral glucose utilization rates in structures of the limbic system, basal ganglia, sensory motor system, and hypothalamic system were determined. The local cerebral glucose utilization rates in each of the four brain regions in the deficient animals were approximately 50% lower (P < 0.05) than in the control group. Results of the present study suggest that serious cognitive deficit may occur in vitamin B(6)-deficient animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号