首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Cloning of the sorbitol dehydrogenase gene (gutB) from Bacillus subtilis offers an excellent system for studying zinc binding, substrate specificity, and catalytic mechanism of this enzyme through protein engineering. As a first step to clone gutB, B. subtilis sorbitol dehydrogenase has been purified to homogeneity and characterized. It is a tetrameric enzyme with a molecular mass of 38 kDa for each subunit. Atomic absorption analysis shows the presence of 1 mol of zinc atom/subunit. Substrate specificity and stereospecificity of the enzyme toward C-2 and C-4 of hexitols were established. Sequence of the first 31 amino acids was determined, and a set of oligonucleotide probes was designed for gene cloning. A positive clone carrying a 5-kilobase pair HindIII insert was isolated and sequenced. Sequence alignment indicated that the deduced amino acid sequence of B. subtilis sorbitol dehydrogenase shows 36% identity in sequence with the liver sorbitol dehydrogenase from sheep, rat, and human. In reference to the sequence of alcohol dehydrogenase, two potential zinc binding sites were identified. Sequence information related to the structure-function relationships of the enzyme is discussed.  相似文献   

9.
The activity of the nicotinamide adenine dinucleotide-dependent glutamate dehydrogenase in Bacillus subtilis was influenced by the carbon source, but not the nitrogen source, in the growth medium. The highest specific activity for this enzyme was found when B. subtilis was grown in a minimal or rich medium that contained glutamate as the carbon source. It is proposed that glutamate dehydrogenase serves a catabolic function in the metabolism of glutamate, is induced by glutamate, and is subject to catabolite repression.  相似文献   

10.
Bacillus subtilis strain 168 possesses an NAD-dependent glutamate dehydrogenase. The level of this enzyme is influenced by the stage of growth, the source of nitrogen, and a high rate of tryptophan biosynthesis. The enzyme appears to serve an anabolic function and, therefore, must be considered as a possible route for the incorporation of inorganic nitrogen into an organic form.  相似文献   

11.
Summary A gene for allosteric lactate dehydrogenase (LDH) of Lactobacillus casei ATCC393 was transferred into Bacillus subtilis. The LDH was produced in a growth-associated type, and comprised up to 40 % of the total cellular protein. The maximum specific activity in the transformant was 208 U/mg protein which was approximately 16 times higher than in L. casei or in the previously constructed Escherichia coli transformant.  相似文献   

12.
The cloned T brucei GAPDH gene was inserted within the B subtilis GAPDH gene, carried by pUC18. Upon transformation of B subtilis by this plasmid, not able to replicate in this host, the whole plasmid was inserted in the resident chromosome, presumably by a single recombination event between homologous, chromosomal and plasmid-borne sequences. The heterologous gene was expressed, as revealed by immunological reaction with monoclonal antibodies, recognizing specifically T brucei GAPDH. T brucei GAPDH, having little or no enzyme activity, comprises about 1.56% of cellular proteins. Peptide mapping showed that a fusion of a 7.5-kDa peptide had occurred to the N-terminal part of T brucei GAPDH. This fused protein is presumably the N-terminal part of B subtilis GAPDH, in agreement with the construction of the integrative plasmid.  相似文献   

13.
14.
Inositol 2-dehydrogenase (EC 1.1.1.18) activity appears during growth of Bacillus subtilis (strain 60015) in nutrient sporulation medium. Its synthesis is induced by myo-inositol and repressed by D-glucose. The enzyme has an apparent molecular weight of 155,000 to 160,000 as determined by sucrose density gradient centrifugation, and it is comprised of four subunits, each having a molecular weight of 39,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point of the enzyme is 4.4 as determined by column isoelectric focusing. The enzyme shows the highest Vmax and lowest Km with myo-inositol as substrate but does not react with scyllo-inositol; it also reacts with the alpha anomer (but not the beta anomer) of D-glucose and with D-xylose. Apparently, the enzyme can remove only the single equatorial hydrogen of the cyclitol or pyranose ring. In contrast to the glucose dehydrogenase of spores, which reacts with D-glucose or 2-deoxy-D-glucose and with NAD or NADP, inositol dehydrogenase requires NAD and does not react with 2-deoxy-D-glucose.  相似文献   

15.
In Escherichia coli, the homodimeric Krebs cycle enzyme isocitrate dehydrogenase (EcIDH) is regulated by reversible phosphorylation of a sequestered active site serine. The phosphorylation cycle is catalyzed by a bifunctional protein, IDH kinase/phosphatase (IDH-K/P). To better understand the nature of the interaction between EcIDH and IDH-K/P, we have examined the ability of an IDH homologue from Bacillus subtilis (BsIDH) to serve as a substrate for the kinase and phosphatase activities. BsIDH exhibits extensive sequence and structural similarities with EcIDH, particularly around the phosphorylated serine. Our previous crystallographic analysis revealed that the active site architecture of these two proteins is almost completely conserved. We now expand the comparison to include a number of biochemical properties. Both IDHs display nearly equivalent steady-state kinetic parameters for the dehydrogenase reaction. Both proteins are also phosphorylated by IDH-K/P in the same ratio (1 mole of phosphate per mole of monomer), and this stoichiometric phosphorylation correlates with an equivalent inhibition of IDH activity. Furthermore, tandem electrospray mass spectrometry demonstrates that BsIDH, like EcIDH, is phosphorylated on the corresponding active site serine residue (Ser-104). Despite the high degree of sequence, functional, and structural congruence between these two proteins, BsIDH is surprisingly a much poorer substrate of IDH-K/P than is EcIDH, with Michaelis constants for the kinase and phosphatase activities elevated by 60- and 3,450-fold, respectively. These drastically disparate values might result from restricted access to the active site cavity and/or from the lack of a potential docking site for IDH-K/P.  相似文献   

16.
Bacillus subtilis spo0H gene.   总被引:16,自引:15,他引:1       下载免费PDF全文
  相似文献   

17.
Sporulation gene spoIIB from Bacillus subtilis.   总被引:3,自引:7,他引:3       下载免费PDF全文
  相似文献   

18.
The enzymatic defects in a number of Bacillus subtilis mutants of the alpha-ketoglutarate dehydrogenase complex lacking activity have been investigated. Mutants in the citK locus, as well as a series of deletions of unknown length covering the citK locus, are deficient in E1 of the complex, alpha-ketoglutarate dehydrogenase, but have normal activities of E2, dehydrolipoyl transsuccinylase, and E3, lipoamide dehydrogenase. The citK mutants and the citL22 mutant show in vitro complementation of alpha-ketoglutarate dehydrogenase complex activity. The citL22 mutant is severely deficient in lipoamide dehydrogenase activity, and, as a result, lacks activity for both the alpha-ketoglutarate and the pyruvate dehydrogenase complexes. Thus, the E3 components of both complexes are identical. The citL22 mutation maps between ura and metC on the chromosome.  相似文献   

19.
Some of the early genes of Bacillus subtilis bacteriophage SPO1 were hypothesized to function in the shutoff of host biosyntheses. Two of these genes, e3 and e22, were cloned and sequenced. E22 showed no similarity to any known protein, while E3, a highly acidic protein, showed significant similarity only to other similarly acidic proteins. Each gene was immediately downstream of a very active early promoter. Each was expressed actively during the first few minutes of infection and was then rapidly shut off and its RNA rapidly degraded. An e3 nonsense mutation severely retarded the degradation of e3 RNA. Expression of a plasmid-borne e3 gene, in either B. subtilis or Escherichia coli, resulted in the inhibition of host DNA, RNA, and protein syntheses and prevented colony formation. However, the e3 nonsense mutation caused no measurable decrease in either burst size or host shutoff during infection and, in fact, caused an increased burst size at high multiplicities of infection. We suggest that e3 is one of several genes involved in host shutoff, that its function is dispensable both for host shutoff and for phage multiplication, and that its shutoff function is not entirely specific to host activities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号