共查询到20条相似文献,搜索用时 15 毫秒
1.
Alginate is a major constituent of mature biofilms produced by Pseudomonas aeruginosa. The penultimate step in the biosynthesis of alginate is the conversion of some beta-D-mannuronate residues in the polymeric substrate polymannuronan to alpha-L-guluronate residues in a reaction catalyzed by C5-mannuronan epimerase. Specificity studies conducted with size-fractionated oligomannuronates revealed that the minimal substrate contained nine monosaccharide residues. The maximum velocity of the reaction increased from 0.0018 to 0.0218 s(-1) as the substrate size increased from 10 to 20 residues, and no additional increase in kcat was observed for substrates up to 100 residues in length. The Km decreased from 80 microM for a substrate containing fewer than 15 residues to 4 microM for a substrate containing more than 100 residues. In contrast to C5-mannuronan epimerases that have been characterized in other bacterial species, P. aeruginosa C5-mannuronan epimerase does not require Ca2+ for activity, and the Ca2+-alginate complex is not a substrate for the enzyme. Analysis of the purified, active enzyme by inductively coupled plasma-emission spectroscopy revealed that no metals were present in the protein. The pH dependence of the kinetic parameters revealed that three residues on the enzyme which all have a pKa of approximately 7.6 must be protonated for catalysis to occur. The composition of the polymeric product of the epimerase reaction was analyzed by 1H NMR spectroscopy, which revealed that tracts of adjacent guluronate residues were readily formed. The reaction reached an apparent equilibrium when the guluronate composition of the polymer was 75%. 相似文献
2.
C5-mannuronan epimerase catalyzes the formation of alpha-L-guluronate residues from beta-D-mannuronate residues in the synthesis of the linear polysaccharide alginate. The reaction requires the abstraction of a proton from C5 of the residue undergoing epimerization followed by re-protonation on the opposite face. Rapid-mixing chemical quench experiments were conducted to determine the nature of the intermediate formed upon proton abstraction in the reaction catalyzed by the enzyme from Pseudomonas aeruginosa. Colorimetric and HPLC analysis of quenched samples indicated that shortened oligosaccharides containing an unsaturated sugar residue form as transient intermediates in the epimerization reaction. This suggests that the carbanion is stabilized by glycal formation, concomitant with cleavage of the glycosidic bond between the residue undergoing epimerization and the adjacent residue. The time dependence of glycal formation suggested that slow steps flank the chemical steps in the catalytic cycle. Solvent isotope effects on V and V/K were unity, consistent with a catalytic cycle in which chemistry is not rate-limiting. The specificity of the epimerase with regard to neighboring residues was examined, and it was determined that the enzyme showed no bias for mannuronate residues adjacent to guluronates versus those adjacent to mannuronates. Proton abstraction and sugar epimerization were irreversible. Existing guluronate residues already present in the polysaccharide were not converted to mannuronates, nor was incorporation of solvent deuterium into existing mannuronates observed. 相似文献
3.
The dual roles of AlgG in C-5-epimerization and secretion of alginate polymers in Pseudomonas aeruginosa 总被引:1,自引:0,他引:1
Pseudomonas aeruginosa strains causing chronic pulmonary infections in cystic fibrosis patients produce high levels of alginate, an exopolysaccharide that confers a mucoid phenotype. Alginate is a linear polymer of d-mannuronate (M) and variable amounts of its C-5-epimer, l-guluronate (G). AlgG is a periplasmic C-5-epimerase that converts poly d-mannuronate to the mixed M+G sequence of alginate. To understand better the role and mechanism of AlgG activity, a mutant was constructed in the mucoid strain FRD1 with a defined non-polar deletion of algG. Instead of producing poly mannuronate, the algG deletion mutant secreted dialysable uronic acids, as does a mutant lacking the periplasmic protein AlgK. High levels of unsaturated ends and the nuclear magnetic resonance spectroscopy pattern revealed that the small, secreted uronic acids were the products of extensive polymer digestion by AlgL, a periplasmic alginate lyase co-expressed with AlgG and AlgK. Thus, AlgG is bifunctional with (i) epimerase activity and (ii) a role in protecting alginate from degradation by AlgL during transport through the periplasm. AlgK appears to share the second role. AlgG and AlgK may be part of a periplasmic protein complex, or scaffold, that guides alginate polymers to the outer membrane secretin (AlgE). To characterize the epimerase activity of AlgG further, the algG4 allele of poly mannuronate-producing FRD462 was shown to encode a protein lacking only the epimerase function. The sequence of algG4 has a Ser-272 to Asn substitution in a serine-threonine-rich and conserved region of AlgG, which revealed a critical residue for C-5-epimerase activity. 相似文献
4.
The Pseudomonas fluorescens AlgG protein,but not its mannuronan C-5-epimerase activity,is needed for alginate polymer formation 下载免费PDF全文
Gimmestad M Sletta H Ertesvåg H Bakkevig K Jain S Suh SJ Skjåk-Braek G Ellingsen TE Ohman DE Valla S 《Journal of bacteriology》2003,185(12):3515-3523
Bacterial alginates are produced as 1-4-linked beta-D-mannuronan, followed by epimerization of some of the mannuronic acid residues to alpha-L-guluronic acid. Here we report the isolation of four different epimerization-defective point mutants of the periplasmic Pseudomonas fluorescens mannuronan C-5-epimerase AlgG. All mutations affected amino acids conserved among AlgG-epimerases and were clustered in a part of the enzyme also sharing some sequence similarity to a group of secreted epimerases previously reported in Azotobacter vinelandii. An algG-deletion mutant was constructed and found to produce predominantly a dimer containing a 4-deoxy-L-erythro-hex-4-enepyranosyluronate residue at the nonreducing end and a mannuronic acid residue at the reducing end. The production of this dimer is the result of the activity of an alginate lyase, AlgL, whose in vivo activity is much more limited in the presence of AlgG. A strain expressing both an epimerase-defective (point mutation) and a wild-type epimerase was constructed and shown to produce two types of alginate molecules: one class being pure mannuronan and the other having the wild-type content of guluronic acid residues. This formation of two distinct classes of polymers in a genetically pure cell line can be explained by assuming that AlgG is part of a periplasmic protein complex. 相似文献
5.
Mucoid strains of Azotobacter vinelandii, Pseudomonas aeruginosa and Pseudomonas syringae var glycinia synthesize alginate, an extracellular copolymer comprising D-mannuronosyl and L-guluronosyl moieties. Extracellular mannuronan C-5 epimerase, which converts polymannuronate to alginate, was demonstrated in supernatant fluid from cultures of A. vinelandii. However, the enzyme could not be demonstrated, using the same assay, in supernatant fluids of cultures of mucoid strains of P. aeruginosa or of P. syringae var glycinia, or in cell-free sonic extracts of P. aeruginosa. The results suggest that the pathways of alginate biosynthesis in A. vinelandii and Pseudomonas species may differ. 相似文献
6.
AlgX is a periplasmic protein required for alginate biosynthesis in Pseudomonas aeruginosa 下载免费PDF全文
Alginate, an exopolysaccharide produced by Pseudomonas aeruginosa, provides the bacterium with a selective advantage that makes it difficult to eradicate from the lungs of cystic fibrosis (CF) patients. Previous studies identified a gene, algX, within the alginate biosynthetic gene cluster on the P. aeruginosa chromosome. By probing cell fractions with anti-AlgX antibodies in a Western blot, AlgX was localized within the periplasm. Consistent with these results is the presence of a 26-amino-acid signal sequence. To examine the requirement for AlgX in alginate biosynthesis, part of algX in P. aeruginosa strain FRD1::pJLS3 was replaced with a nonpolar gentamicin resistance cassette. The resulting algXDelta::Gm mutant was verified by PCR and Western blot analysis and was phenotypically nonmucoid (non-alginate producing). The algXDelta::Gm mutant was restored to the mucoid phenotype with wild-type P. aeruginosa algX provided on a plasmid. The algXDelta::Gm mutant was found to secrete dialyzable oligouronic acids of various lengths. Mass spectroscopy and Dionex chromatography indicated that the dialyzable uronic acids are mainly mannuronic acid dimers resulting from alginate lyase (AlgL) degradation of polymannuronic acid. These studies suggest that AlgX is part of a protein scaffold that surrounds and protects newly formed polymers from AlgL degradation as they are transported within the periplasm for further modification and eventual transport out of the cell. 相似文献
7.
Epimerase active domain of Pseudomonas aeruginosa AlgG, a protein that contains a right-handed beta-helix 下载免费PDF全文
The polysaccharide alginate forms a protective capsule for Pseudomonas aeruginosa during chronic pulmonary infections. The structure of alginate, a linear polymer of beta1-4-linked O-acetylated d-mannuronate (M) and l-guluronate (G), is important for its activity as a virulence factor. Alginate structure is mediated by AlgG, a periplasmic C-5 mannuronan epimerase. AlgG also plays a role in protecting alginate from degradation by the periplasmic alginate lyase AlgL. Here, we show that the C-terminal region of AlgG contains a right-handed beta-helix (RHbetaH) fold, characteristic of proteins with the carbohydrate-binding and sugar hydrolase (CASH) domain. When modeled based on pectate lyase C of Erwinia chrysanthemi, the RHbetaH of AlgG has a long shallow groove that may accommodate alginate, similar to protein/polysaccharide interactions of other CASH domain proteins. The shallow groove contains a 324-DPHD motif that is conserved among AlgG and the extracellular mannuronan epimerases of Azotobacter vinelandii. Point mutations in this motif disrupt mannuronan epimerase activity but have no effect on alginate secretion. The D324A mutation has a dominant negative phenotype, suggesting that the shallow groove in AlgG contains the catalytic face for epimerization. Other conserved motifs of the epimerases, 361-NNRSYEN and 381-NLVAYN, are predicted to lie on the opposite side of the RHbetaH from the catalytic center. Point mutations N362A, N367A, and V383A result in proteins that do not protect alginate from AlgL, suggesting that these mutant proteins are not properly folded or not inserted into the alginate biosynthetic scaffold. These motifs are likely involved in asparagine and hydrophobic stacking, required for structural integrity of RHbetaH proteins, rather than for mannuronan catalysis. The results suggest that the AlgG RHbetaH protects alginate from degradation by AlgL by channeling the alginate polymer through the proposed alginate biosynthetic scaffold while epimerizing approximately every second d-mannuronate residue to l-guluronate along the epimerase catalytic face. 相似文献
8.
《Journal of Fermentation and Bioengineering》1993,75(3):220-222
A bacterium (strain Al) isolated from a ditch produces three kinds of intracellular alginate lyases [Al-I (molecular weight: M.W. 60,000), Al-II-1 (M.W. 60,000) and Al-II-2]; the former two lyases have been purified and characterized (Yonemoto et al., J. Ferment. Bioeng., 72, 152–157, 1991). As part of a series of studies, Al-II-2 lyase was purified from cell-free extract of the bacterium. The lyase, with a M.W. of 25,000, depolymerized sodium-, potassium- and propyleneglycol alginates most efficiently at pH 8.0, 70°C, but it was inactive toward bacterial alginates with O-acetyl groups. 相似文献
9.
Identification of algF in the alginate biosynthetic gene cluster of Pseudomonas aeruginosa which is required for alginate acetylation. 总被引:1,自引:12,他引:1 下载免费PDF全文
Mucoid strains of Pseudomonas aeruginosa produce a high-molecular-weight exopolysaccharide called alginate that is modified by the addition of O-acetyl groups. To better understand the acetylation process, a gene involved in alginate acetylation called algF was identified in this study. We hypothesized that a gene involved in alginate acetylation would be located within the alginate biosynthetic gene cluster at 34 min on the P. aeruginosa chromosome. To isolate algF mutants, a procedure for localized mutagenesis was developed to introduce random chemical mutations into the P. aeruginosa alginate biosynthetic operon on the chromosome. For this, a DNA fragment containing the alginate biosynthetic operon and adjacent argF gene in a gene replacement cosmid vector was utilized. The plasmid was packaged in vivo into lambda phage particles, mutagenized in vitro with hydroxylamine, transduced into Escherichia coli, and mobilized to an argF auxotroph of P. aeruginosa FRD. Arg+ recombinants coinherited the mutagenized alginate gene cluster and were screened for defects in alginate acetylation by testing for increased sensitivity to an alginate lyase produced by Klebsiella aerogenes. Alginates from recombinants which showed increased sensitivity to alginate lyase were tested for acetylation by a colorimetric assay and infrared spectroscopy. Two algF mutants that produced alginates reduced more than sixfold in acetyl groups were obtained. The acetylation defect was complemented in trans by a 3.8-kb XbaI-BamHI fragment from the alginate gene cluster when placed in the correct orientation under a trc promoter. By a merodiploid analysis, the algF gene was further mapped to a region directly upstream of algA by examining the polar effect of Tn501 insertions. By gene replacement, DNA with a Tn501 insertion directly upstream of algA was recombined with the chromosome of mucoid strain FRD1. The resulting strain, FRD1003, was nonmucoid because of the polar effect of the transposon on the downstream algA gene. By providing algA in trans under the tac promoter, FRD1003 produced nonacetylated alginate, indicating that the transposon was within or just upstream of algF. These results demonstrated that algF, a gene involved in alginate acetylation, is located directly upstream of algA. 相似文献
10.
Anaerobic production of alginate by Pseudomonas aeruginosa: alginate restricts diffusion of oxygen. 总被引:2,自引:1,他引:1 下载免费PDF全文
D J Hassett 《Journal of bacteriology》1996,178(24):7322-7325
11.
12.
The exopolysaccharide alginate of Pseudomonas aeruginosa was shown to be important in determining the degree of cell detachment from an agar surface. Nonmucoid strain 8822 gave rise to 50-fold more sloughed cells than mucoid strains 8821 and 8830. Alginate anchors the bacteria to the agar surface, thereby influencing the extent of detachment. The role of the P. aeruginosa alginate lyase in the process of cell sloughing was investigated. Increased expression of the alginate lyase in mucoid strain 8830 led to alginate degradation and increased cell detachment. Similar effects were seen both when the alginate lyase was induced at the initial stage of cell inoculation and when it was induced at a later stage of growth. It appears that high-molecular-weight alginate polymers are required to efficiently retain the bacteria within the growth film. When expressed from a regulated promoter, the alginate lyase can induce enhanced sloughing of cells because of degradation of the alginate. This suggests a possible role for the lyase in the development of bacterial growth films. 相似文献
13.
Cloning of Pseudomonas aeruginosa algG, which controls alginate structure. 总被引:12,自引:12,他引:12 下载免费PDF全文
The biochemical mechanism by which alpha-L-guluronate (G) residues are incorporated into alginate by Pseudomonas aeruginosa is not understood. P. aeruginosa first synthesizes GDP-mannuronate, which is used to incorporate beta-D-mannuronate residues into the polymer. It is likely that the conversion of some beta-D-mannuronate residues to G occurs by the action of a C-5 epimerase at either the monomer (e.g., sugar-nucleotide) or the polymer level. This study describes the results of a molecular genetic approach to identify a gene involved in the formation or incorporation of G residues into alginate by P. aeruginosa. Mucoid P. aeruginosa FRD1 was chemically mutagenized, and mutants FRD462 and FRD465, which were incapable of incorporating G residues into alginate, were independently isolated. Assays using a G-specific alginate lyase from Klebsiella aerogenes and 1H-nuclear magnetic resonance analyses showed that G residues were absent in the alginates secreted by these mutants. 1H-nuclear magnetic resonance analyses also showed that alginate from wild-type P. aeruginosa contained no detectable blocks of G. The mutations responsible for defective incorporation of G residues into alginate in the mutants FRD462 and FRD465 were designated algG4 and algG7, respectively. Genetic mapping experiments revealed that algG was closely linked (greater than 90%) to argF, which lies at 34 min on the P. aeruginosa chromosome and is adjacent to a cluster of genes required for alginate biosynthesis. The clone pALG2, which contained 35 kilobases of P. aeruginosa DNA that included the algG and argF wild-type alleles, was identified from a P. aeruginosa gene bank by a screening method that involved gene replacement. A DNA fragment carrying algG was shown to complement algG4 and algG7 in trans. The algG gene was physically mapped on the alginate gene cluster by subcloning and Tn501 mutagenesis. 相似文献
14.
Andreea A. Gheorghita Francis Wolfram Gregory B. Whitfield Holly M. Jacobs Roland Pfoh Steven S.Y. Wong Allison K. Guitor Mara C. Goodyear Alison M. Berezuk Cezar M. Khursigara Matthew R. Parsek P. Lynne Howell 《The Journal of biological chemistry》2022,298(2)
Pseudomonas aeruginosa is an opportunistic human pathogen and a leading cause of chronic infection in the lungs of individuals with cystic fibrosis. After colonization, P. aeruginosa often undergoes a phenotypic conversion to mucoidy, characterized by overproduction of the alginate exopolysaccharide. This conversion is correlated with poorer patient prognoses. The majority of genes required for alginate synthesis, including the alginate lyase, algL, are located in a single operon. Previous investigations of AlgL have resulted in several divergent hypotheses regarding the protein’s role in alginate production. To address these discrepancies, we determined the structure of AlgL and, using multiple sequence alignments, identified key active site residues involved in alginate binding and catalysis. In vitro enzymatic analysis of active site mutants highlights R249 and Y256 as key residues required for alginate lyase activity. In a genetically engineered P. aeruginosa strain where alginate biosynthesis is under arabinose control, we found that AlgL is required for cell viability and maintaining membrane integrity during alginate production. We demonstrate that AlgL functions as a homeostasis enzyme to clear the periplasmic space of accumulated polymer. Constitutive expression of the AlgU/T sigma factor mitigates the effects of an algL deletion during alginate production, suggesting that an AlgU/T-regulated protein or proteins can compensate for an algL deletion. Together, our study demonstrates the role of AlgL in alginate biosynthesis, explains the discrepancies observed previously across other P. aeruginosa ΔalgL genetic backgrounds, and clarifies the existing divergent data regarding the function of AlgL as an alginate degrading enzyme. 相似文献
15.
Alginate lyase (AlgL) activity is required for alginate biosynthesis in Pseudomonas aeruginosa 总被引:3,自引:0,他引:3 下载免费PDF全文
To determine whether AlgL's lyase activity is required for alginate production in Pseudomonas aeruginosa, an algLdelta::Gm(r) mutant (FRD-MA7) was created. algL complementation of FRD-MA7 restored alginate production, but algL constructs containing mutations inactivating lyase activity did not, demonstrating that the enzymatic activity of AlgL is required for alginate production. 相似文献
16.
Martine Malissard Colette Duez Micheline Guinand Marie-Jeanne Vacheron Georges Michel Nicole Marty Bernard Joris Iris Thamm Jean-Marie Ghuysen 《FEMS microbiology letters》1993,110(1):101-106
Abstract To overcome problems associated with Western blotting of denatured proteins, we have used quantitative immunoelectrophoretic techniques to perform functional analysis of the Neisseria gonorrhoeae common antigen. Using these techniques, we show (a) that Neisseria gonorrhoeae expresses an antigen that is cross-reactive with the common antigen of Pseudomonas aeruginosa and Legionella micdadei and with the GroEl-like protein of Chlamydia , and (b) that this N. gonorrhoeae common antigen has lectin-like activity and can be precipitated with three different sugars immobilized on agarose beads: α- d -glucosamine, maltose and fucose. 相似文献
17.
18.
Bacteriophage C5 of Pseudomonas aeruginosa is able to reactivate ultraviolet (u.v.)-irradiated phage E79 in coinfection experiments and decrease the u.v.-sensitivity of a host-cell reactivation deficient mutant. These properties suggest that phage C5 has a gene(s) which is involved in the repair of u.v.-damaged DNA. The isolation of two u.v.-sensitive mutants of C5 supports this hypothesis. 相似文献
19.
J.H. LEITÃO AND i. SÁ-CORREIA. 1993. The manipulation of the alginate pathway in two Pseudomonas aeruginosa mucoid variants was attempted at growth temperatures within the range 20C-40C. This was carried out by increasing the level of either phosphomannose isomerase (PMI) and GDP-mannose pyrophosphorylase (GMP) or GDP-mannose dehydrogenase (GMD) encoded by algA or algD respectively, present in recombinant plasmids derived from the controlled expression vector pMMB24. The specific growth rate of cells expressing either algA or algD genes from recombinant plasmids was lower than that of cells harbouring the cloning vector only. Stimulation of alginate synthesis was observed when the expression of the alginate genes was low, in the absence of isopropyl-β-D-thiogalactopyranoside (IPTG) induction. The further increase of the level of alginate enzymes in induced cells, without the simultaneous increase of other limiting steps, had no positive effect on the strictly regulated alginate pathway. Temperature profiles for alginate synthesis were modified reflecting changes in rate limiting steps. Limitations on the polymerization ability and the competition between cell growth and alginate synthesis were possibly involved in the modification of the temperature profiles for alginate production, or in the decrease of the molecular weight of polymers produced by recombinants under conditions that led to highly active alginate synthesis. The acetyl content of alginates produced by the recombinants was higher than that of the biopolymer controls, possibly due to the higher acetyl-CoA availability in slower growing cells. 相似文献
20.
Expression, purification, and biochemical characterization of WbpP, a new UDP-GlcNAc C4 epimerase from Pseudomonas aeruginosa serotype O6 总被引:1,自引:0,他引:1
Creuzenet C Belanger M Wakarchuk WW Lam JS 《The Journal of biological chemistry》2000,275(25):19060-19067
B-band lipopolysaccharide is an important virulence factor of the opportunistic pathogen Pseudomonas aeruginosa. WbpP is an enzyme essential for B-band lipopolysaccharide production in serotype O6. Sequence analysis suggests that it is involved in the formation of N-acetylgalacturonic acid. To test this hypothesis, overexpression and biochemical characterization of WbpP were performed. By using spectrophotometric assays and capillary electrophoresis, we show that WbpP is a UDP-GlcNAc C4 epimerase. The K(m) for UDP-GlcNAc and UDP-GalNAc are 197 and 224 micrometer, respectively. At equilibrium, 70% of UDP-GalNAc is converted to UDP-GlcNAc, whereas the yield of the reverse reaction is only 30%. The enzyme can also catalyze the inter-conversion of non-acetylated substrates, although the efficiency of catalysis is significantly lower. Only 15 and 40% of UDP-Glc and UDP-Gal, respectively, are converted at equilibrium. WbpP contains tightly bound NAD(H) and does not require additional cofactors for activity. It exists as a dimer in its native state. This paper is the first report of expression and characterization of a C4 UDP-GlcNAc epimerase at the biochemical level. Moreover, the characterization of the enzymatic function of WbpP will help clarify ambiguous surface carbohydrate biosynthetic pathways in P. aeruginosa and other organisms where homologues of WbpP exist. 相似文献