首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maternal and fetal concentrations of plasma insulin, pancreatic glucagon, growth hormone (GH), corticosteroids and enteroglucagon, and of blood glucose and lactate, were measured in well-fed, late pregnant ewes before, during and after walking on a treadmill at 0.7 m.s-1, 10 degrees slope for 60 min. Exercise caused rapid and substantial increases in maternal concentrations of glucose, lactate, pancreatic glucagon and corticosteroids, smaller but significant decreases in levels of GH and enteroglucagon, and no change in insulin. With the exception of GH, concentrations of these maternal hormones had returned to pre-exercise levels within 20 min of stopping exercise. The exercise-induced maternal hyperglycaemia was associated with a proportionately similar, rapid increase in fetal blood glucose; fetal blood lactate and plasma corticosteroids also increased, but at slower rates and other fetal hormone concentrations were unchanged. During recovery there was a rapid increase in fetal insulin levels. The results are discussed in terms of the regulation of exercise-induced changes in maternal energy metabolism, and fetal metabolic and hormonal sensitivity to these changes.  相似文献   

2.
The present study was carried out to determine whether an increase in the pancreatic immunoreactive glucagon (IRG) secretion during the acute phase of insulin-induced hypoglycemia depends on circulating catecholamines of adrenal origin. Hypoglycemia was induced by a bolus insulin injection (0.15 IU/kg, i.v.) in dogs anesthetized with sodium pentobarbital (35 mg/kg, i.v.). Plasma aortic epinephrine (E) and norepinephrine (NE) concentrations increased significantly 30 min after the injection of insulin. At this time point, a functional adrenalectomy (diversion of bilateral adrenal venous blood from the systemic circulation) was performed for 5 min. The increased aortic E and NE concentrations significantly decreased reaching, within 5 min, a level below the corresponding preinjection control value. The basal output of pancreatic IRG (6.58 +/- 1.12 ng/min, n = 6) significantly increased (24.93 +/- 2.77 ng/min, p less than 0.05, n = 6) 30 min after insulin injection. During the functional adrenalectomy, the increased pancreatic IRG output diminished rapidly, within 5 min, to approximately 50% (11.73 +/- 3.19 ng/min, p less than 0.05, n = 6) of the value observed 30 min after insulin administration. In the other group of dogs receiving sham adrenalectomy, the increased aortic E and NE concentrations and pancreatic IRG output following insulin injection remained elevated above the levels observed immediately before the sham adrenalectomy. The net decrease in IRG output during the adrenalectomy was significant (p less than 0.05) compared with the corresponding net IRG output observed in the sham group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Little is known of the endocrine and metabolic milieu in preterm and term neonates exposed to surgical stress. In order to define the effects of anaesthesia and surgery on the hormonal regulation of intermediary metabolism, the levels of plasma insulin, glucagon, adrenaline and noradrenaline were measured in addition to blood glucose, lactate, pyruvate, alanine, acetoacetate, hydroxybutyrate, glycerol and plasma-free fatty acids in 38 neonates (23 term, 15 preterm) undergoing surgery. Blood samples were drawn pre-operatively, at the end of surgery, and at 6, 12 and 24 h post-operatively. Plasma levels of adrenaline and noradrenaline increased significantly in response to surgery. In term neonates, plasma insulin concentrations were unaltered at the end of surgery, but were significantly increased throughout the post-operative period; plasma glucagon levels were unchanged at the end of surgery but had significantly decreased by 24 h after surgery. Insulin levels in preterm neonates remained unchanged during surgery as well as in the post-operative period. All neonates developed a significant peri-operative hyperglycaemia which persisted up to 12 h after surgery. Blood lactate and pyruvate increased during surgery, accompanied by significant increases in plasma free fatty acids, total ketone bodies and glycerol concentrations by the end of surgery. Blood glucose concentrations were significantly correlated with plasma adrenaline levels at the end of surgery and with plasma glucagon at 6 h post-operatively. The insulin/glucose ratio was significantly decreased at the end of surgery in term and preterm neonates. Further analysis showed that total parenteral nutrition given just before surgery and thiopentone anaesthesia given during surgery significantly augmented the peri-operative hyperglycaemic response of term neonates. Thus, stress-related hormonal changes in preterm and term neonates may precipitate a catabolic state characterized by glycogenolysis, gluconeogenesis, lipolysis and mobilization of gluconeogenic substrates in the post-operative period. Prevention of these metabolic derangements by anaesthetic or hormonal manipulation may possibly help to improve the clinical outcome of neonates undergoing surgery.  相似文献   

4.
To determine the effect of maternal exercise on fetal liver glycogen content, fed and fasted rats that were pregnant for 20.5 or 21.5 days were run on a rodent treadmill for 60 min at 12 m/min with a 0% grade or 16 m/min up a 10% grade. The rats were anesthetized by intravenous injection of pentobarbital sodium, and fetal and maternal liver and plasma samples were collected and frozen. Fetal liver glycogenolysis did not occur as a result of maternal exercise. Fetal blood levels of lactate increased 22-60%, but glucose, plasma glucagon, and insulin were unchanged during maternal exercise. Maternal liver glycogen decreased as a result of exercise in all groups of rats except the fasted 20.5-day-pregnant group. Plasma free fatty acids increased in all groups and blood lactate increased in fed (20.5 days) and fasted (21.5 days) pregnant rats. Maternal glucose, glucagon, and insulin values remained constant during exercise. The fetus appears to be well-protected from metabolic stress during moderate-intensity maternal exercise.  相似文献   

5.
This study examined the effect of acute exposure of the whole body to cold on blood lactate response during incremental exercise. Eight subjects were tested with a cycle ergometer in a climatic chamber, room temperature being controlled either at 24 degrees C (MT) or at -2 degrees C (CT). The protocol consisted of a step increment in exercise intensity of 30 W every 2 min until exhaustion. Oxygen consumption (VO2) was measured at rest and during the last minute of each exercise intensity. Blood samples were collected at rest and at exhaustion for estimations of plasma norepinephrine (NE), epinephrine (E), free fatty acid (FFA) and glucose concentrations, during the last 15 s of each exercise step and also during the 1st, 4th, 7th, and the 10th min following exercise for the determination of blood lactate (LA) concentration. The VO2 was higher during CT than during MT at rest and during nearly every exercise intensity. At CT, lactate anaerobic threshold (LAT), determined from a marked increase of LA above resting level, increased significantly by 49% expressed as absolute VO2, and 27% expressed as exercise intensity as compared with MT. The LA tended to be higher for light exercise intensities and lower for heavy exercise intensities during CT than during MT. The E and NE concentrations increased during exercise, regardless of ambient temperature. Furthermore, at rest and at exhaustion E concentrations did not differ between both conditions, while NE concentrations were greater during CT than during MT. Moreover, an increase off FFA was found only during CT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Effects of asphyxia at birth on postnatal glucose regulation in the rat   总被引:1,自引:0,他引:1  
We have characterized the effect of a period of asphyxia at birth, followed by recovery, upon newborn rats. Asphyxiated pups were subjected to 3 to 5% (v/v) inspired oxygen during the first 20 min of life and then maintained in room air for 6 h. Control pups were maintained in room air throughout the 6-h period. Hypoxia produced severe asphyxia as reflected by a pH of 6.76 +/- 0.05, PaCO2 of 87 +/- 3 mm Hg and PaO2 of 15.4 +/- 4 mm Hg, and by a greatly increased blood lactate/pyruvate ratio. Plasma catecholamine concentrations in asphyxiated pups were elevated (epinephrine 13,866 +/- 250 pg/ml, norepinephrine 9611 +/- 1813 pg/ml) compared to control animals (epinephrine 973 +/- 234 pg/ml, norepinephrine 774 +/- 133 pg/ml) at 20 min. Asphyxia initially increased plasma glucose concentration, and then with recovery it fell below controls. Hepatic glycogen stores did not differ between asphyxiated and control pups. Plasma insulin concentrations remained elevated during asphyxia and the usual neonatal surge of plasma glucagon was significantly delayed. Neonatal asphyxia increases catecholamines, causes lactic acidemia, and alters insulin and glucagon levels. The interactions between these variables alters the normal pattern of glucose availability during the neonatal period.  相似文献   

7.
The hypothesis that depression of insulin and glucagon levels during rapid, acute hemorrhage is controlled by somatostatin was supported by hormonal changes measured in the cat. By 5 min of hemorrhage to 50 mmHg (1 mmHg = 133.322 Pa) arterial blood pressure, insulin and glucagon were severely depressed and somatostatin levels rose to 232% of basal levels. Insulin and glucagon suppression was maintained for the 30-min period of hemorrhage. Following return of the blood, somatostatin levels remained high and insulin and glucagon suppression was maintained. The data support, but do not prove, the hypothesis.  相似文献   

8.
Increases in ventromedial hypothalamic (VMH) norepinephrine (NE) levels and/or activities have been observed in a variety of animal models of the obese insulin-resistant condition. This study examined the metabolic effects of chronic NE infusion (25 nmol/h) into the unilateral VMH of normal rats. Within 4 days, VMH NE infusion significantly increased plasma insulin (140%), glucagon (45%), leptin (300%), triglyceride (100%), abdominal fat pad weight (50%), and white adipocyte lipogenic (100%) and lipolytic (100%) activities relative to vehicle-infused rats. Furthermore, isolated islet insulin secretory response to glucose (15 mM) within 4 days of such treatment was increased over twofold (P < 0.05). Among treated animals, fat stores continued to increase over time and plateaued at approximately 2 wk (3-fold increase), remaining elevated to the end of the study (5 wk). By week 4 of treatment, NE infusion induced glucose intolerance as evidenced by a 32% increase in plasma glucose total area under the glucose tolerance test curve (P < 0.01). Whole body fat oxidation rate measured after 5 wk of infusion was significantly increased among treated animals as evidenced by a reduced respiratory quotient (0.87 +/- 0.01) relative to controls (0. 90 +/- 0.01). VMH NE infusion induced hyperphagia (30%) only during the first week and did not affect body weight over the 5-wk period. Increases in VMH NE activity that are common among obese insulin-resistant animal models can cause the development of this obese glucose-intolerant (metabolic) syndrome.  相似文献   

9.
The present study examined whether oral short-term administration of salbutamol (Sal) modifies performance and selected hormonal and metabolic variables during submaximal exercise. Eight recreational male athletes completed two cycling trials at 80-85% peak O(2) consumption until exhaustion after either gelatin placebo (Pla) or oral Sal (12 mg/day for 3 wk) treatment, according to a double-blind and randomized protocol. Blood samples were collected at rest, after 5, 10, and 15 min, and at exhaustion to determine growth hormone (GH), cortisol, testosterone, triiodothyronine (T(3)), C peptide, free fatty acid (FFA), blood glucose, lactate, and blood urea values. Time of cycling was significantly increased after chronic Sal intake (Sal: 30.5 +/- 3.1 vs. Pla: 23.7 +/- 1.6 min, P < 0.05). No change in any variable was found before cycling except a decrease in blood urea concentration and an increase in T(3) after Sal that remained significant throughout the exercise test (P < 0.05). Compared with rest, exercise resulted in a significant increase in GH, cortisol, testosterone, T(3), FFAs, and lactate and a decrease in C peptide after both treatments with higher exercise FFA levels and exhaustion GH concentrations after Sal (P < 0.05). Sal but not Pla significantly decreased exercise blood glucose levels. From these data, short-term Sal intake did appear to improve performance during intense submaximal exercise with concomitant increase in substrate availability and utilization, but the exact mechanisms involved need further investigation.  相似文献   

10.
Glucose utilization increases markedly in the normal dog during stress induced by the intracerebroventricular (ICV) injection of carbachol. To determine the extent to which insulin, glucagon, and selective (alpha/beta)-adrenergic activation mediate the increment in glucose metabolic clearance rate (MCR) and glucose production (R(a)), we used five groups of normal mongrel dogs: 1) pancreatic clamp (PC; n = 7) with peripheral somatostatin (0.8 microg x kg(-1) x min(-1)) and intraportal replacement of insulin (1,482 +/- 84 pmol x kg(-1) x min(-1)) and glucagon (0.65 ng x kg(-1) x min(-1)) infusions; 2) PC plus combined alpha (phentolamine)- and beta (propranolol)-blockade (7 and 5 microg x kg(-1) x min(-1), respectively; alpha+beta; n = 5); 3) PC plus alpha-blockade (alpha; n = 6); 4) PC plus beta-blockade (beta; n = 5); and 5) a carbachol control group without PC (Con; n = 10). During ICV carbachol stress (0-120 min), catecholamines, ACTH, and cortisol increased in all groups. Baseline insulin and glucagon levels were maintained in all groups except Con, where glucagon rose 33%, and alpha, where insulin increased slightly but significantly. Stress increased (P < 0.05) plasma glucose in Con, PC, and alpha but decreased it in beta and alpha+beta. The MCR increment was greater (P < 0.05) in beta and alpha+beta than in Con, PC, and alpha. R(a) increased (P < 0.05) in all groups but was attenuated in alpha+beta. Stress-induced lipolysis was abolished in beta (P < 0.05). The marked rise in lactate in Con, PC, and alpha was abolished in alpha+beta and beta. We conclude that the stress-induced increase in MCR is largely independent of changes in insulin, markedly augmented by beta-blockade, and related, at least in part, to inhibition of lipolysis and glycogenolysis, and that R(a) is augmented by glucagon and alpha- and beta-catecholamine effects.  相似文献   

11.
The effects of administration of glucose orally and tolbutamide or arginine intravenously on insulin and glucagon secretion and blood glucose level were studied in normal and thiamine-deficient rats. In thiamine deficiency, insulin secretion and glucose tolerance were impaired during glucose ingestion. Tolbutamide decreased the blood glucose level in both control and thiamine-deficient rats but its stimulatory effect on insulin secretion was minimal in thiamine-deficient rats unlike the control animals. Arginine did not alter substantially the blood glucose or insulin in thiamine-deficient rats, whereas it increased the insulin level in control rats. The fasting plasma glucagon level was high in thiamine deficiency. Tolbutamide increased the plasma glucagon in control rats, but did so only marginally in thiamine-deficient rats. Arginine also increased the glucagon secretion throughout the period of study in control rats. In thiamine-deficient rats the glucagon secretion was pronounced only after 20 min of arginine administration. These results suggest that an unimpaired glucose metabolism is a prerequisite to induce proper insulin secretion. Only proper insulin secretion can check the glucagon secretion rather than the increased glucose level. Hypoglycemia can induce glucagon secretion independent of the insulin level.  相似文献   

12.
Plasma glucagon and catecholamines during exhaustive short-term exercise   总被引:1,自引:0,他引:1  
Plasma glucagon and catecholamine levels were measured in male athletes before and after exhaustive 15 min continuous running and strenuous intermittent short-term exercise (3 X 300 m). Blood lactate levels were higher after the intermittent exercise (mean 16.7 mmol X 1(-1)) than after the continuous running (mean 7.1 mmol X 1(-1)). Plasma glucagon concentration increased during continuous running and intermittent exercise by 41% and 55%, respectively, and the increases in plasma noradrenaline concentration were 7.7- and 9.1-fold compared with the respective pre-exercise values. Immediately after the exercises plasma cyclic AMP, blood glucose and alanine levels were elevated significantly. The data suggest that the sympathoadrenal system is of major importance for liver glucose production during high-intensity exercises. Catecholamines directly stimulate liver glucose production and may indirectly stimulate it by enhancing the secretion of glucagon.  相似文献   

13.
The metabolism and action of insulin and glucagon were investigated in goats during mid lactating (50 days postpartum) and during the dry period. The animals were fed hay and concentrate during lactation (1:1) and only hay during dry period. Pulse doses of unlabelled insulin and glucagon were injected intravenously. The disappearance of insulin from the circulation was faster during lactation than during dry period; the metabolic clearance rate of insulin was significantly increased during lactation. In contrast, the kinetic parameters of glucagon disappearance were very similar during the two periods. Basal plasma hormones (i.e. before hormone injection) were higher during lactation than during dry period; the molar ratio insulin:glucagon was left unchanged. The increase in plasma insulin following glucagon-stimulated hyperglycaemia was similar during the two periods. The ability of insulin to elicit a decrease in blood glucose was markedly impaired during lactation when compared to dry period. In contrast the ability of glucagon to increase blood glucose was slightly improved during lactation. Those endocrine changes could be related to the effect of both lactation and diet.  相似文献   

14.
The influence of somatostatin (SRIF) on blood glucose, plasma insulin and plasma glucagon was studied in hamsters bearing a transplantable islet-cell tumor secreting insulin and glucagon as well as in normal controls. Fed anesthetized animals were infused intraperitoneally either at a dose of 10 microgram in 15 min or of 150 microgram in 30 min, and intravenously at a dose of 250 microgram in 30 min. Blood was withdrawn from the jugular vein before and after infusion. Before the infusions, tumor bearing animals (TB) had lower blood glucose, markedly elevated plasma glucagon and slightly lower plasma insulin by comparison with normal hamsters (N). Both doses of somatostatin infused by the intraperitoneal route produced a slight but significant hypoglycemia in TB hamsters but not in normals. Ten microgram SRIF did not affect insulin and plasma glucagon levels whereas 150 microgram SRIF significantly depressed plasma insulin in both types of hamsters (N and TB). This latter dose of SRIF decreased plasma glucagon in normal but not in tumor-bearing hamsters. Intravenous infusion of 250 microgram SRIF did not reduce the hyperglucagonemia of TB hamsters either. These results indicate that somatostatin does not reduce the hyperglucagonemia due to the transplantable islet-cell tumor but nevertheless decreases blood glucose and plasma insulin.  相似文献   

15.
Chub Leuciscus cephalus exposed to simulated pulsed direct current electrofishing operations exhibited rapid elevations in plasma glucose and blood lactate levels. Plasma glucose levels were significantly higher 0·5 h after simulated electrofishing operations, and peaked 2 h after treatment. Glucose levels remained high for up to 4 h. No changes in plasma glucose were evident following handling. Simulated electrofishing operations and handling induced an immediate lactacidosis in chub. Initial responses to both treatments were similar except that blood lactate was significantly higher in fish exposed to simulated electrofishing operations than in handled fish 5 and 15 min after treatment. Blood lactate remained elevated in fish exposed to simulated electrofishing operations for 2 h, while blood lactate of handled fish returned to levels similar to those in the control fish within 0·5 h post‐treatment.  相似文献   

16.
The present study was designed to determine the effect of naloxone, a specific opiate receptor antagonist, on postprandial levels of insulin, glucagon, pancreatic polypeptide (PP), somatostatin-like immunoreactivity (SLI) and gastrin in response to carbohydrate and fat-rich test meals in a group of 6 healthy volunteers. The addition of naloxone to a meal consisting of 50 g sucrose dissolved in 200 ml water augmented the rise of plasma insulin levels significantly during the first 30 min after its ingestion and reduced the decrease of plasma glucagon. During the ingestion of a fat-rich meal in form of 200 ml cream naloxone reduced the rise in plasma insulin and pancreatic polypeptide and elevated glucagon levels during the last 30 min of the experimental period. When sucrose was dissolved in 200 ml cream the addition of naloxone augmented the postprandial rise of insulin levels between 15 and 60 min after ingestion of the meal and elicited an increase of plasma SLI and PP levels throughout the entire experimental period which indicates that post-prandial levels of insulin, glucagon, PP and SLI are modulated via endogenous opiate receptors during the ingestion of carbohydrate and fat test meals and that this effect depends on the composition of the ingested nutrients. These data raise the possibility that endogenous opiates participate in the regulation of postprandial insulin, glucagon, somatostatin and pancreatic polypeptide release not only in certain disease states as demonstrated recently for insulin secretion in type II diabetes mellitus but endogenous opiates may also be of importance under physiological conditions.  相似文献   

17.
Effects of intravenous Y. pestis mouse toxin (LD50) injection on glucose, lactate glucagon, insulin blood levels and cAMP liver content in dynamics of intoxication development were studied. Hypoglycemia, observed 2 hours after toxin administration seems not to be due to the enhanced glucose utilization in peripheral tissues because insulin blood level during this period was decreased and lactate concentration has not been changed. Glucagon content by 2-5 hour of shock was strong elevated. Proposal is made that Y. pestis mouse toxin might induce carbohydrate metabolism alterations via direct liver glucose synthesising enzymes inhibition rather than cAMP-dependent glycogenolysis and gluconeogenesis regulation disturbances in this organ.  相似文献   

18.
The effect of CL 115,347, a topically active antihypertensive PGE2 analog, and PGE2 on changes in blood pressure (BP), heart rate (HR) response and plasma epinephrine (E) and norepinephrine (NE) levels induced by stimulation of the sympathetic spinal cord outflow were studied in pithed stroke-prone spontaneously hypertensive rats (SHRSP). Surgical pithing significantly reduced plasma E but not NE levels suggesting that the sympathoadrenal medullary system differentially affects E and NE release. Sympathetic stimulation of the spinal cord of pithed SHRSP increased HR, BP, plasma E and NE levels. Topically applied CL 115,347 (0.001-0.2 mg/kg) dose-dependently decreased BP, while intravenously infused PGE2 (30 micrograms/kg/min) did not alter BP except for a brief initial drop. Topical application of CL 115,347 (0.1 mg/kg) also inhibited BP responses to sympathetic stimulation without effects on HR or plasma E or NE levels. Intravenous infusion of PGE2 (30 micrograms/kg/min) inhibited both BP and HR responses to spinal cord stimulation but did not alter plasma catecholamine levels. These studies in SHRSP suggest that CL 115,347 and PGE2 modulate cardiovascular responses mainly via postjunctional effects, but act differently on the cardiovascular elements, viz. CL 115,347 acts primarily on blood vessels while PGE2 acts on blood vessels and heart.  相似文献   

19.
The effect of a two hour period of hypo- and hyperglucagonemia on a subsequent insulin-induced hypoglycemia was studied in nine healthy volunteers. Hypoglucagonemia was provoked by somatostatin (50 micrograms/h) and hyperglucagonemia by glucagon infusion (3.25 ng/kg/min) together with somatostatin, while saline alone was given as control. Hypoglycemia was induced by insulin infusion (2.4 U/h) for two hours. The hyperglycemic effect of glucagon was transient and similar nadir glucose levels were obtained in the three experiments. Preinfusion with glucagon impaired glucose recovery in spite of preserved secretion of epinephrine during restitution of blood glucose in this experiment. It is concluded, that a period of elevated glucagon levels deteriorates the restitution of blood glucose following hypoglycemia. Hyperglucagonemia, commonly apparent in poorly controlled diabetics, may therefore be of importance in explaining the impaired recovery of blood glucose seen in such patients after hypoglycemia.  相似文献   

20.
The present work was undertaken in order to investigate the influence of endocrine pancreas on the adrenal gland of Triturus carnifex. Our experiments aimed at studying the effects of intraperitoneal injections of glucagon on ultrastructural morphological and morphometrical features of steroidogenic and chromaffin tissues, as well as serum levels of aldosterone, corticosterone, norepinephrine (NE) and epinephrine (E). With regard to steroidogenic tissue, in January and November, glucagon decreased lipid droplet content in steroidogenic cells, that showed clear signs of increased activity. Moreover, increased corticosteroid serum levels were found. With regard to chromaffin tissue, in January glucagon played a stimulatory role on PNMT enzyme, eliciting an increase in the presence of E granules, and a decrease in the presence of NE granules, in the chromaffin cells. Moreover, increased E serum levels and decreased NE serum levels were found. In November, glucagon gave rise to a decrease in the presence of NE and E granules in the cells; E serum levels were strongly increased, whereas NE serum levels did not undergo any significant change. These findings suggest an involvement of the endocrine pancreas of the newt in the modulation of adrenal gland activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号