首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human erythroleukemia cells are a model system for studies of alpha 2-adrenergic receptors and their coupling to inhibition of adenylate cyclase (McKernan, R. M., Howard, M. J., Motulsky, H. J., and Insel, P. A. (1987) Mol. Pharmacol. 32, 258-265). Using Fura-2, we show that alpha 2-adrenergic receptor stimulation also increases intracellular Ca2+ in these cells by 80-250 nM. Although epinephrine only inhibited forskolin-stimulated cAMP generation when beta-adrenergic receptors were blocked, the Ca2+ increase was not affected by beta-adrenergic receptor blockade. The Ca2+ increase was not affected by forskolin or 8-bromo-cAMP. Thus, alpha 2-adrenergic receptors independently couple to elevation of intracellular Ca2+ and adenylate cyclase inhibition. Chelating all extracellular Ca2+ did not reduce the response, demonstrating mobilization of intracellular, rather than influx of extracellular Ca2+. The epinephrine-stimulated Ca2+ mobilization occurred prior to any detectable increase in inositol-(1,4,5)-trisphosphate. It was abolished by pretreatment with pertussis toxin (which blocks some G protein-mediated processes), but not by aspirin and indomethacin (which inhibit cyclooxygenase), nordihydroguaiaretic acid (which inhibits lipoxygenase), or Na+-free buffer (to block any Na+H+ exchange). We conclude, therefore, that alpha 2-adrenergic receptors on human erythroleukemia cells couple to mobilization of intracellular Ca2+ via a (pertussis toxin-sensitive) G protein-mediated mechanism that is independent of inhibition of adenylate cyclase.  相似文献   

2.
Fura 2 loaded thoracic aorta strips from rabbits were used. Norepinephrine, phenylephrine, clonidine, and tizanidine induced an increase in cytosolic Ca2+ concentration [( Ca2+]i) and muscle tension in a concentration-dependent manner. A positive correlation between [Ca2+]i and tension development owing to the agonists was noted. The slope of regression lines between [Ca2+]i and tension development for clonidine and tizanidine, alpha 1-adrenergic partial agonists, were significantly steeper than those for norepinephrine and phenylphrine, alpha 1-adrenergic full agonists. The intrinsic activities of the partial agonists obtained from tension development were greater than those from changes in [Ca2+]i. These results suggest that the partial agonists cause a greater muscle tension than the full agonists at the same level of [Ca2+]i.  相似文献   

3.
We have identified in the DDT1 smooth muscle cell line a [3H]dihydroergocryptine-binding site having the characteristics of an alpha 1-adrenergic receptor. Specific binding of [3H]dihydroergocryptine to DDT1 cells grown either in monolayer or suspension culture was reversible, saturable, and of high affinity, and the binding site demonstrated stereoselectivity. [3H]Dihydroergocryptine dissociation constants of 1.4 +/- 0.2 nM and 1.4 +/- 0.3 nM were observed for suspension and monolayer cells, respectively. However, the concentration of binding sites in suspension-cultured cells (65,100 +/- 8,300 sites/cell) was significantly greater (p less than 0.001) than that found in monolayer cells (27,900 +/- 4,300 sites/cell). The order of agonist competition for the binding site was epinephrine (Ki = 0.92 +/- 0.32 microM) greater than or equal to norepinephrine (Ki = 2.2 +/- 1.0 microM) greater than isoproterenol (Ki = 137 +/- 17 microM), consistent with an alpha-adrenergic interaction. Results of competition experiments with specific antagonists prazosin (alpha 1-selective) or yohimbine (alpha 2-selective) and a computer modeling technique indicated that the alpha-adrenergic receptor of the DDT1 cell was predominantly (greater than 95%) the alpha 1-subtype.  相似文献   

4.
The fluorescent chelating agent quin 2 has been employed to monitor alterations of intracellular free Ca2+ concentrations ([Ca2+]i) in response to alpha 1-adrenergic receptor activation in adherent BC3H-1 cells. To correlate the kinetics of [Ca2+]i changes with transmembrane fluxes of this ion, continuous monitoring of [Ca2+]i has been undertaken on a monolayer of cells. Previous measurements of the transmembrane efflux of Ca2+ show a distinct lag in the response over a range of phenylephrine concentrations. By contrast, the elevation of [Ca2+]i is rapid (t1/2 approximately 2 s) and maintained for 30 s before it begins to decline to basal concentrations. The differences in kinetics indicate that the temporal delay in cellular Ca2+ efflux results from either activation of the transport system for Ca2+ extrusion or translocation of free Ca2+ to the transport site. The decline of [Ca2+]i with continued agonist exposure parallels both the efflux kinetics from the cell and the decline of total cellular Ca2+. At a time when free [Ca2+]i approaches the resting concentration, total cellular Ca2+ is reduced to a steady state value of 60% of that seen prior to stimulation. The Kact for phenylephrine-stimulated elevation in [Ca2+]i on the monolayer is 0.51 microM, which is similar to the Kact of 0.90 microM observed for phenylephrine-activated 45Ca2+ efflux. Addition of phentolamine subsequent to phenylephrine addition immediately reverses the agonist-stimulated Ca2+ mobilization, initiating a rapid return of [Ca2+]i to resting levels. A comparison of the kinetics of Ca2+ mobilization with its transmembrane flux suggests that the agonist augments the rate of recycling of intracellular Ca2+ between the free and bound states rather than causing release as a single bolus from the bound stores.  相似文献   

5.
Ca2+ and activation mechanisms in skeletal muscle   总被引:12,自引:0,他引:12  
  相似文献   

6.
alpha 2-Adrenergic receptors (alpha 2-AR) are negatively coupled to adenylyl cyclase via the GTP-binding protein Gi. However, inhibition of adenylylcyclase does not account for many effector cell responses to alpha 2-AR agonists, suggesting that the receptor can couple to other signal transduction pathways. One potential pathway may be the stimulation of Na+/H+ exchange elicited by alpha 2-AR activation in renal proximal tubule cells, platelets, and the NG-10815 cell line. To determine whether the various receptor-effector coupling mechanisms operate in a tissue-specific manner, we studied the effect of alpha 2-AR activation on basal and stimulated Na+/H+ exchange in epithelial cells isolated from human colon (HT-29 adenocarcinoma cells). Na+/H+ exchange was measured by quantitation of intracellular hydrogen ion concentration (acetoxymethyl ester 2,7-biscarboxyethyl-5(6)carboxyfluorescein) and 22Na+ uptake. HT-29 cells expressed an amiloride-sensitive Na+/H+ exchanger that was activated by reduction of intracellular pH (pHi) to 6.0 but was quiescent at a physiological pHi. The rapid alkalinization observed after acid loading (0.57 +/- 0.07 pH units/min/10(4) cells) was dependent on external sodium and was blocked by amiloride (Ki approximately 2.1 microM). Although epinephrine and the selective alpha 2-AR agonists clonidine and UK-14304 inhibited forskolin-activated adenylylcyclase, these compounds did not alter basal Na+/H+ exchange. Stimulated Na+/H+ exchange was similarly unaffected by epinephrine. In contrast, stimulated Na+/H+ exchanger activity was completely inhibited by the selective alpha 2-agonists clonidine, UK-14304, and guanabenz. This inhibitory effect was not blocked by the alpha 2-AR antagonist rauwolscine, and it is likely due to a direct interaction with the exchanger molecule itself. Structure/activity studies indicated that the compounds inhibiting exchanger activity possess either an imidazoline or guanidinium moiety. Although these molecules bear structural similarity to amiloride, they did not inhibit the amiloride-sensitive epithelial sodium channel in toad urinary bladder, suggesting that these compounds may be useful as "amiloride-like" ligands selective for the Na+/H+ exchanger. These data indicate that in the HT-29 intestinal cell line, in contrast to observations in other tissues, alpha 2-adrenergic receptors are not coupled to the Na+/H+ exchanger, suggesting that the cell-signaling mechanisms utilized by the alpha 2-AR are tissue specific.  相似文献   

7.
A Jakob  J Becker  G Sch?ttli  G Fritzsch 《FEBS letters》1989,246(1-2):127-130
The possibility that Mg2+ mobilization is stimulated in perfused liver by alpha 1-adrenergic agonists was studied by measuring Mg2+ release in response to 0.5 and 20 microM phenylephrine. During preperfusion exogenous Mg2+ was added to the medium to give 1.2 mM. 5 min before starting the addition of phenylephrine the infusion of exogenous Mg2+ was stopped. Mg2+ in the perfusate leaving the liver was measured by atomic absorption spectroscopy. Analysis of the Mg2+ decay curves with two exponential models indicated that phenylephrine caused dose-dependent Mg2+ release from perfused rat livers.  相似文献   

8.

Background

The multisubunit (α1S2-δ, β1a and γ1) skeletal muscle dihydropyridine receptor (DHPR) transduces membrane depolarization into release of Ca2+ from the sarcoplasmic reticulum (SR) and also acts as an L-type Ca2+ channel. To more fully investigate the function of the γ1 subunit in these two processes, we produced mice lacking this subunit by gene targeting.

Results

Mice lacking the DHPR γ1 subunit (γ1 null) survive to adulthood, are fertile and have no obvious gross phenotypic abnormalities. The γ1 subunit is expressed at approximately half the normal level in heterozygous mice (γ1 het). The density of the L-type Ca2+ current in γ1 null and γ1 het myotubes was higher than in controls. Inactivation of the Ca2+ current produced by a long depolarization was slower and incomplete in γ1 null and γ1 het myotubes, and was shifted to a more positive potential than in controls. However, the half-activation potential of intramembrane charge movements was not shifted, and the maximum density of the total charge was unchanged. Also, no shift was observed in the voltage-dependence of Ca2+ transients. γ1 null and γ1 het myotubes had the same peak Ca2+ amplitude vs. voltage relationship as control myotubes.

Conclusions

The L-type Ca2+ channel function, but not the SR Ca2+ release triggering function of the skeletal muscle dihydropyridine receptor, is modulated by the γ1 subunit.  相似文献   

9.
5,6-Epoxyeicosatrienoic acid mobilizes Ca2+ in anterior pituitary cells   总被引:2,自引:0,他引:2  
Luteinizing hormone releasing hormone stimulates the concomitant release of luteinizing hormone and 45Ca2+ from prelabeled anterior pituitary cells. Indomethacin (10 microM) and nordihydroguaiaretic acid (10 microM) had no effect on the luteinizing hormone releasing hormone-stimulated release of either luteinizing hormone or 45Ca2+. Eicosatetraynoic acid (10 microM) blocked both luteinizing hormone releasing hormone-stimulated luteinizing hormone secretion and luteinizing hormone releasing hormone-stimulated 45Ca2+ efflux. 5,6-Epoxyeicosatrienoic acid stimulated both luteinizing hormone secretion and 45Ca2+ efflux from anterior pituitary cells. Additionally, 5,6-epoxyeicosatrienoic acid closely mimics the ability of luteinizing hormone releasing hormone to increase intracellular free calcium. These results are consistent with the hypothesis that 5,6-EET alters calcium homeostasis in a manner similar to that observed during luteinizing hormone releasing hormone stimulation of luteinizing hormone release.  相似文献   

10.
The rat thyroid cell line, FRTL-5, expresses an alpha 1-adrenergic receptor when exposed to thyrotropin. We have found that occupation of this alpha 1-adrenergic receptor by norepinephrine stimulated the release of [3H]arachidonic acid from prelabeled cells. Arachidonic acid was metabolized primarily to prostaglandin E2 and to much smaller amounts of 11-hydroxy-5,8,11,13-eicosatetraenoic acid, 15-hydroxy-5,8,11,13-eicosatetraenoic acid, prostaglandin D2, and thromboxane B2. Synthesis of all these metabolites was inhibited by the cyclooxygenase inhibitor indomethacin. When FRTL-5 cells were starved of thyrotropin for 24 h, norepinephrine nearly doubled [3H]thymidine uptake into DNA. Cyclooxygenase inhibitors inhibited norepinephrine-stimulated thymidine uptake by 60-70%. Of several arachidonic acid metabolites tested, none was able to stimulate thymidine uptake directly in the presence of indomethacin. Prostaglandin E2, however, was able to restore [3H]thymidine uptake when added together with norepinephrine in the presence of indomethacin. Thus, occupation of an alpha 1-adrenergic receptor in a functional rat thyroid cell line leads to arachidonic acid release. Subsequent metabolism of the arachidonic acid by the cyclooxygenase pathway leads to synthesis of prostaglandin E2, which mediates a norepinephrine-stimulated activity related to cell replication.  相似文献   

11.
Norepinephrine (NE) sensitization of rat brain Na+ -K+ ATPase to ethanol (EtOH) inhibition appears to be mediated by alpha 1-adrenoreceptors, since it was reversed by prazosin and WB-4101 (alpha 1-receptor antagonists) in a concentration-dependent manner, but not by yohimbine and piperoxan (alpha 2-receptor antagonists). In addition, clonidine (alpha 2-agonist) and methoxamine (central receptor type uncertain) produced very little sensitization. Chronic EtOH administration to rats for 3 weeks produced tolerance to the hypothermic effect of test doses of EtOH (3 g/kg, i.p.) and a decreased inhibitory effect of NE + EtOH on the enzyme in vitro. This inhibition was still prevented by prazosin and WB-4101. However, the binding of tritiated WB-4101 and prazosin to brain membrane preparations from control and EtOH-tolerant rats revealed that the maximum number of binding sites (Bmax) and the dissociation constant (KD) of alpha 1-adrenoreceptors were decreased after tolerance development. These changes in numbers and binding properties of alpha 1-adrenoreceptors probably account for the decreased NE sensitization of the ATPase to EtOH inhibition in preparations from EtOH-tolerant rats.  相似文献   

12.
13.
The Madin-Darby canine kidney (MDCK) cell line, derived from distal tubule/collecting duct, expresses differentiated properties of renal tubule epithelium in culture. We studied the expression of adrenergic receptors in MDCK to examine the role of catecholamines in the regulation of renal function. Radioligand-binding studies demonstrated, on the basis of receptor affinities of subtype-selective adrenergic agonists and antagonists, that MDCK cells have both alpha 1- and beta 2- adrenergic receptors. To determine whether these receptor types were expressed by the same cell, we developed a number of clonal MDCK cell lines. The clonal lines had stable but unique morphologies reflecting heterogeneity in the parent cell line. Some clones expressed only beta 2-adrenergic receptors and were nonmotile, whereas others expressed both alpha 1- and beta 2-receptors and demonstrated motility on the culture substrate at low cell densities. In one clone, alpha- and beta- receptor expression was stable for more than 50 passages. Catecholamine agonists increased phosphatidylinositol turnover by activating alpha- adrenergic receptors and cellular cyclic adenosine monophosphate accumulation by activating beta-adrenergic receptors. Guanine nucleotide decreased the affinity of isoproterenol for the beta 2- receptor but did not alter the affinity of epinephrine for the alpha 1- receptor. These results show that alpha 1- and beta 2-receptors can be expressed by a single renal tubular cell and that the two receptors behave as distinct entities in terms of cellular response and receptor regulation. Heterogeneity of adrenergic receptor expression in MDCK clones may reflect properties of different types of renal tubule cells.  相似文献   

14.
A Tripathy  L Xu  G Mann    G Meissner 《Biophysical journal》1995,69(1):106-119
The calmodulin-binding properties of the rabbit skeletal muscle Ca2+ release channel (ryanodine receptor) and the channel's regulation by calmodulin were determined at < or = 0.1 microM and micromolar to millimolar Ca2+ concentrations. [125I]Calmodulin and [3H]ryanodine binding to sarcoplasmic reticulum (SR) vesicles and purified Ca2+ release channel preparations indicated that the large (2200 kDa) Ca2+ release channel complex binds with high affinity (KD = 5-25 nM) 16 calmodulins at < or = 0.1 microM Ca2+ and 4 calmodulins at 100 microM Ca2+. Calmodulin-binding affinity to the channel showed a broad maximum at pH 6.8 and was highest at 0.15 M KCl at both < or = 0.1 MicroM and 100 microM Ca2+. Under condition closely related to those during muscle contraction and relaxation, the half-times of calmodulin dissociation and binding were 50 +/- 20 s and 30 +/- 10 min, respectively. SR vesicle-45Ca2+ flux, single-channel, and [3H]ryanodine bind measurements showed that, at < or = 0.2 microM Ca2+, calmodulin activated the Ca2+ release channel severalfold. Ar micromolar to millimolar Ca2+ concentrations, calmodulin inhibited the Ca(2+)-activated channel severalfold. Hill coefficients of approximately 1.3 suggested no or only weak cooperative activation and inhibition of Ca2+ release channel activity by calmodulin. These results suggest a role for calmodulin in modulating SR Ca2+ release in skeletal muscle at both resting and elevated Ca2+ concentrations.  相似文献   

15.
Using the whole-cell variation of the patch-clamp technique, we have demonstrated that retinoic acid (RA) blocks Ca channels and inhibits cell proliferation in a mouse hybridoma cell line (MHY206) derived from a fusion of murine myeloma and splenic B cells. In 25 mM external Ca, and with an Na internal solution containing aspartate, cAMP, and Mg-ATP, inward currents were activated in these cells from holding potentials more negative than -70 mV, peaked at voltage steps up to -20 mV, and were voltage-inactivated within the 125-msec duration of the pulse. With more positive pulses, outward current carried by Na ions permeating through the Ca channels were seen. Application of RA blocked both inward and outward current through the Ca channels in a dose-dependent manner, with 50% block at a concentration of around 5 x 10(-5) M. Proliferation was blocked by 75% at that concentration, and the same relation between the reduction in current and proliferation was seen throughout the concentration range. A similar reduction of Ca currents and proliferation was demonstrated with octanol, a long-chain alcohol that has recently been reported to block Ca channels. These results suggest a role for Ca channels in the proliferation of MHY206 cells and implicate blockage of these channels as contributing to the antiproliferative activity of RA.  相似文献   

16.
Thin filament regulation of contraction is thought to involve the binding of two activating ligands: Ca2+ and strongly bound cross-bridges. The specific cross-bridge states required to promote thin filament activation have not been identified. This study examines the relationship between cross-bridge cycling and thin filament activation by comparing the results of kinetic experiments using the Ca2+ sensitizers caffeine and bepridil. In single skinned rat soleus fibers, 30 mM caffeine produced a leftward shift in the tension-pCa relation from 6.03 +/- 0.03 to 6.51 +/- 0.03 pCa units and lowered the maximum tension to 0.60 +/- 0.01 of the control tension. In addition, the rate of tension redevelopment (ktr) was decreased from 3.51 +/- 0.12 s-1 to 2.70 +/- 0.19 s-1, and Vmax decreased from 1.24 +/- 0.07 to 0.64 +/- 0.02 M.L./s. Bepridil produced a similar shift in the tension-pCa curves but had no effect on the kinetics. Thus bepridil increases the Ca2+ sensitivity through direct effects on TnC, whereas caffeine has significant effects on the cross-bridge interaction. Interestingly, caffeine also produced a significant increase in stiffness under relaxing conditions (pCa 9.0), indicating that caffeine induces some strongly bound cross-bridges, even in the absence of Ca2+. The results are interpreted in terms of a model integrating cross-bridge cycling with a three-state thin-filament activation model. Significantly, strongly bound, non-tension-producing cross-bridges were essential to modeling of complete activation of the thin filament.  相似文献   

17.
18.
Functional impacts of the skeletal muscle-specific Ca2+ channel subunit gamma1 have previously been studied using coexpression with the cardiac alpha1C polypeptide in nonmuscle cells and primary-cultured myotubes of gamma1-deficient mice. Data from single adult muscle fibers of gamma-/- mice are not yet available. In the present study, we performed voltage clamp experiments on enzymatically isolated mature muscle fibers of the m. interosseus obtained from gamma+/+ and gamma-/- mice. We measured L-type Ca2+ inward currents and intracellular Ca2+ transients during 100-ms step depolarizations from a holding potential of -80 mV. Ratiometric Ca2+ transients were analyzed with a removal model fit approach to calculate the flux of Ca2+ from the sarcoplasmic reticulum. Ca2+ current density, Ca2+ release flux, and the voltage dependence of activation of both Ca2+ current and Ca2+ release were not significantly different. By varying the holding potential and recording Ca2+ current and Ca2+ release flux induced by 100-ms test depolarizations to +20 mV, we studied quasi-steady-state properties of slow voltage-dependent inactivation. For the Ca2+ current, these experiments showed a right-shifted voltage dependence of inactivation. Importantly, we could demonstrate that a very similar shift occurred also in the inactivation curve of Ca2+ release. Voltages of half maximal inactivation were altered by 16 (current) and 14 mV (release), respectively. Muscle fiber bundles, activated by elevated potassium concentration (120 mM), developed about threefold larger contracture force in gamma-/- compared with gamma+/+. This difference was independent of the presence of extracellular Ca2+ and likely results from the lower sensitivity to voltage-dependent inactivation of Ca2+ release. These results demonstrate a specific alteration of voltage-dependent inactivation of both Ca2+ entry and Ca2+ release by the gamma1 subunit of the dihydropyridine receptor in mature muscle fibers of the mouse.  相似文献   

19.
An iodoazido[125I]prazosin analogue was employed to photoaffinity label alpha 1-adrenergic receptors in rat liver plasma membranes. Labeled proteins were separated by gradient polyacrylamide gel electrophoresis in sodium dodecyl sulfate, and (-)-epinephrine displacement of [3H]prazosin binding was concurrently measured in the presence or absence of guanosine 5'-O-(gamma-thiotriphosphate) (GTP[gamma S]). Inclusion of EGTA and/or proteinase inhibitors during membrane preparation and incubation increased the effect of GTP[gamma S] on alpha 1-adrenergic agonist binding and this could be correlated with increased concentrations of a 78 kDa photoaffinity labeled protein. In contrast, omission of EGTA or addition of exogenous Ca2+ diminished or abolished the effect of GTP[gamma S] on binding and caused loss of the 78 kDa form and the appearance of lower molecular weight labeled proteins. Age-dependent differences in GTP[gamma S] effects on alpha 1-adrenergic agonist binding were abolished when membranes were prepared and incubated in the presence of EGTA and proteinase inhibitors. However, the 78 kDa photoaffinity labeled protein observed in adult rats (over 225 g body weight) was not apparent in membranes from younger rats (50-75 g), even when the membranes were prepared and incubated in the presence of EGTA and proteinase inhibitors. Instead, a 68 kDa species was the major labeled protein. These data suggest that GTP effects on alpha 1-adrenergic agonist binding in rat liver membranes require the presence of either a 68 or 78 kDa alpha 1-adrenergic binding protein. Failure to inhibit proteolysis in the membranes leads to the generation of lower-molecular-weight binding proteins and the loss of GTP effects on alpha 1-adrenergic agonist binding, although [3H]prazosin binding characteristics are not changed. It is suggested that either the proteolyzed forms of the alpha 1-adrenergic receptor are unable to couple to a putative guanine nucleotide-binding regulatory protein, or that such a protein is concurrently proteolyzed and is thus unable to couple to the receptor.  相似文献   

20.
Endothelin-1 mobilizes profilin-1-bound PIP2 in cardiac muscle   总被引:2,自引:0,他引:2  
Phosphatidylinositol 4,5-bisphosphate (PIP2) is a key down-stream substrate of the endothelin signaling pathway and plays a role in regulating protein function at the membrane-cytoskeletal interface. However, the dynamic properties of distinct pools of PIP2 are poorly understood, especially for PIP2 that is bound to cytoskeletal proteins. We investigated the effects of endothelin-1 (ET-1) stimulation on protein-bound PIP2 in cardiac muscle. Isolated rat myocytes and homogenized mouse ventricles were exposed to 10 nM ET-1 for varying time periods and protein-bound PIP2 was analyzed using an anti-PIP2 antibody and Western blotting. Several cytoskeletal proteins were found to contain tightly bound PIP2, including profilin-1 (approximately 15 kDa), capZ (approximately 32 kDa), gCap39, (approximately 39 kDa) and alpha-actinin (approximately 106 kDa). Interestingly, ET-1 pretreatment reduced the amount of PIP2 bound to profilin-1 by 46% after 15 mins, followed by a recovery to near basal levels after 60 mins. ET-1 had no effect on capZ-, gCap39-, or alpha-actinin-bound PIP2 levels. To further explore the dynamics of PIP2 binding, brefeldin-A (BFA) was used to disrupt PIP2 binding to ADP-ribosylation factors and to impair receptor internalization. Pretreatment with 1 microM BFA increased the PIP2 signal on profilin-1 x 54% after 15 mins, followed by a decline to subbasal levels after 60 mins. Like ET-1, BFA had no effect on levels of PIP2 bound to capZ or to alpha-actinin. Taken together, the data indicate that profilin-1 binds PIP2 dynamically and may serve as a key regulator of the balance between cytoskeletal integrity and PIP2 availability for Ca2+/PKC signaling in the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号