首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conjugates to two thermoprecipitating polymers, poly(N-vinyl caprolactam) and poly(N-isopropylacrylmide), with soybean trypsin inhibitor, Cibacron Blue 3GA, Cu-iminodiacetic acid, and p-aminobenzamidine were synthesized. The interaction of these conjugates with trypsin and lactate dehydrogenase was studied. Coupling of the ligand to a polymer resulted in a 100-1000-fold decrease in enzyme-affinity. Rough theoretical estimates revealed that a successful affinity precipitation required that the binding of a target protein and a ligand coupled to a polymer have binding constants on the order of 10(-7)-10(-8) M. Such strong affinity of low molecular weight ligands that can provide binding constants of 10(-9)-10(-11) M or alternatively multipoint attachment of the target protein molecule. The ligand in the ligand-polymer conjugate is still accessible to the protein after thermoprecipitation, and the latter can bind with the particle of the dispersion of thermoprecipitated ligand-polymer precipitate may result in stripping of enzyme molecules from the surface of the particles. (c) 1993 Wiley & Sons, Inc.  相似文献   

2.
Precipitation of enzymes with reversible soluble–insoluble polymers is a simple approach which can be easily scaled up. This work reports investigations aiming at verifying the existence of specific interactions and complex formation between porcine trypsin and poly acrylic acids using spectroscopy techniques. The trypsin–polymer complex was insoluble at pH lower than 5, with a stoichiometric ratio polymer mol per protein mol of 1:148. It took only a minute for the insoluble complex to form and it was redissolved modifying the pH of the medium. The enzymatic activity of trypsin was maintained even in the presence of the polymer and after precipitation poly acrylic acid presence protect the enzyme from itself degradation. The conditions of complex formation were studied using pure proteins that could be applied on porcine pancreas homogenates as an isolation strategy of trypsin.  相似文献   

3.
The uptake of methotrexate by KB cells was observed to be dependent on time, temperature, and concentration of extracellular methotrexate. The Kd for methotrexate surface binding to KB cells was approximately 200 nM. Following exposure of KB cells to trace quantities of [3H]methotrexate for periods ranging from 6 min to 24 h, the cellular methotrexate was progressively formed into methotrexate polyglutamates and was bound to dihydrofolate reductase as well as to a particulate folate binding protein. To further study the mechanism of methotrexate uptake in KB cells, the N-hydroxysuccinimide ester of methotrexate was used to covalently label the surface of KB cells and to inhibit transport of methotrexate. The N-hydroxysuccinimide ester of methotrexate was bound to a species of protein with an apparent molecular weight of 160,000 in 1% (v/v) Triton X-100 that bound folic acid and was specifically precipitated by antiserum raised against the previously purified high-affinity folate binding protein (the folate receptor) from human KB cells. In addition, trypsin was utilized to remove surface-accessible covalently bound methotrexate. The amount of covalently bound methotrexate that could be released by trypsin initially decreased on incubation at 37 degrees C, suggesting that the methotrexate and binding protein were internalized. However, with time, trypsin could again release the covalently bound methotrexate, suggesting that the binding protein cycles from the external cell surface to the inside of the cell and out again.  相似文献   

4.
The binding of deoxyribonucleoprotein to Toluidine Blue, to cetylpyridinium chloride and to polylysine of various molecular weights was studied to determine the percentage of free DNA phosphate groups in deoxyribonucleoprotein. Binding was measured by addition of these reagents to deoxyribonucleoprotein at a range of concentrations such that complete precipitation of the deoxyribonucleoprotein occurred. With Toluidine Blue the binding corresponded to about 48% of the DNA phosphates in deoxyribonucleoprotein. The dye did not cause appreciable displacement of protein from the DNA. With cetylpyridinium chloride the binding corresponded to about 41% of the DNA phosphates. With polylysine preparations of molecular weight 1250 and 7790 the binding values for deoxyribonucleoprotein were 46 and 38% respectively. The results suggest that the free phosphates lie in stretches sufficiently long to accommodate most of each polylysine molecule. With polylysine of molecular weight 62000 cross-linking of free stretches of DNA on different deoxyribonucleoprotein molecules probably occurs. It is concluded that although most of the free phosphates are probably ;hidden' beneath covering histone, corresponding perhaps to runs of non-basic residues in the latter, they are surprisingly accessible to very large molecules. The relevance of this finding to the problem of gene repression is discussed.  相似文献   

5.
It is well established that the dynamic motion of proteins plays an important functional role, and that the adaptation of a protein molecule to its environment requires optimization of internal non-covalent interactions and protein-solvent interactions. Serine proteinases in general, and trypsin in particular has been used as a model system in exploring possible structural features for cold adaptation. In this study, a 500 p.s. and a 1200 p.s. molecular dynamics (MD) simulation at 300 K of both anionic salmon trypsin and cationic bovine trypsin are analyzed in terms of molecular flexibility, internal non-covalent interactions and protein-solvent interactions. The present MD simulations do not indicate any increased flexibility of the cold adapted enzyme on an overall basis. However, the apparent higher flexibility and deformability of the active site of anionic salmon trypsin may lower the activation energy for ligand binding and for catalysis, and might be a reason for the increased binding affinity and catalytic efficiency compared to cationic bovine trypsin.  相似文献   

6.
聚苯乙烯阴离子交换树脂(GM201)经预处理除去杂质后先与戊二醛(2—6%)反应,再与胰蛋白酶(5000u/mg,8—10mg/mL,pH 8.0)反应即制得固定化胰蛋白酶。此法得到的固定化胰蛋白酶具有良好的热稳定性,贮藏稳定性和操作稳定性,可用于工业化目的。脱脂豆粉经萃取(PH9.0)后,稀释4倍,在pH5.0下沉淀分离出大豆球蛋白,然后用酸性水(pH5.0)洗涤两次,并进行碱溶与酸沉淀两次,即可将大豆分离蛋白质的STI残留降低到1.85%,比活性降到1u/mg以下。最后再用固定化胰蛋白酶亲和层析,就可以除去大豆分离蛋白质中残留的STI。  相似文献   

7.
The UP1 single-stranded nucleic acid binding protein from calf thymus (Herrick, G. & Alberts, B.M. (1976) J. Biol. Chem. 251, 2124-2132) has recently been shown to be a proteolytic fragment derived from the A1 heterogeneous nuclear ribonucleoprotein (hnRNP) (Pandolfo et al. (1985) Nucleic Acids Res. 13, 6577-6590). The NH2-terminus of the 22,162 dalton UP1 protein appears to be blocked, which suggests that UP1 represents the NH2-terminal two thirds of this 32,000 dalton hnRNP protein. The complete amino acid sequence for UP1 was derived from automated sequencing of peptides that were purified by HPLC from digests with trypsin, chymotrypsin, Staphylococcus aureus protease, endoproteinase Lys-C, and cyanogen bromide. Trichloroacetic acid precipitation followed by enzymatic digestion in 2 M urea proved to be the best approach for generating UP1 peptides. By carboxymethylating after, rather than before, digestion it was possible to avoid problems associated with the insolubility of the carboxymethylated UP1. All of the resulting peptides in amounts varying from 2 to 15 nmol were coupled to aminopolystyrene prior to solid-phase sequencing. Using these methods, no difficulties were encountered in assigning glutamic acid residues or in completely sequencing peptides that contained up to 25-30 residues. The relative ease with which the UP1 protein was sequenced, requiring only about a year to complete, and the comparatively modest amount of protein required, less than 5 mg, attests to the usefulness of water soluble carbodiimide coupling and solid-phase sequencing for determining the primary structures of proteins. In addition to serving as a basis for determining structural relationships among various mammalian single-stranded nucleic acid binding proteins, the amino acid sequence of UP1 reveals that the A1 hnRNP protein contains a region of internal sequence homology that apparently corresponds to two independent nucleic acid binding sites.  相似文献   

8.
When rat brain membranes were incubated with [3H]flunitrazepam in the presence of UV light, predominantly one protein (P51) was irreversibly labeled in cerebellum and at least two proteins (P51 and P55) were labeled in hippocampus. On digestion of membranes with increasing concentrations of trypsin up to 40% of radioactivity irreversibly bound to proteins was removed from the membranes. In addition, P51 was nearly completely degraded to a peptide with apparent molecular weight 39,000 and this peptide was further degraded to a peptide with apparent molecular weight 25,000. In contrast, protein P55 was only partially degraded by trypsin and yielded two proteolytic peptides with apparent molecular weights 42,000 and 45,000 which seemed to be rather stable against further attack by trypsin. Membranes treated with trypsin still had the capacity to bind [3H]-flunitrazepam reversibly with an affinity similar to that of membranes not previously treated with trypsin. When these membranes were irradiated with UV light, the same proteolytic peptides were detected as in membranes first photolabeled and then digested with trypsin. These results suggest a close association between reversible and irreversible benzodiazepine binding sites and indicate that membrane-associated proteins P51 and P55 are differentially protected against degradation by trypsin.  相似文献   

9.
[3H]-Cocaine binding sites are identified in human placental villus tissue plasma membranes. These binding sites are associated with a protein and show saturable and specific binding of [3H]-cocaine with a high affinity site of 170 fmole/mg protein (Kd 16.7 nM). The binding is lost with pretreatment with trypsin or heat. The membrane bound protein is solubilized with the detergent 3-(3-cholamidopropyl)dimethyl-ammonio-1-propane sulphonate (CHAPS) with retention of its saturable and specific binding of [3H]-cocaine. The detergent-protein complex migrates on a sepharose CL-6B gel chromatography column as a protein with an apparent molecular weight of 75,900. The protein has an S20,w value of 5.1. The binding of this protein to norcocaine, pseudococaine, nomifensine, imipramine, desipramine, amphetamine and dopamine indicates that it shares some, but not all, the properties of the brain cocaine receptor. The physiologic significance of this protein in human placenta is currently unclear.  相似文献   

10.
Physicochemical studies performed on alpha-2-macroglobulin were correlated with the biological activities of this protein. Equilibrium dialysis of the binding of 65Zn by alpha-2-macroglobulin at pH 7.9 showed heterogeneous binding which could be attributed to two classes of binding sites. The site of greatest affinity for zinc had an apparent stoichiometry (n1 in gatoms/mol of alpha-2-macroglobulin monomer) of 12 and an apparent association constant (K1) of 3.06.10(7). The second binding site had an n2 of 60 and K2 of 1.32.10(5). The trypsin binding activity of alpha-2-macroglobulin did not depend on the presence of zinc in this protein since all but traces of this metal could be removed by EDTA without loss of trypsin binding activity. Saturation of site 1 with zinc did not affect the trypsin binding activity of alpha-2-macroglobulin, but binding of the metal by site 2 progressively decreased the trypsin binding activity by causing an irreversable association of the alpha-2-macroglobulin molecules. Removal of excess zinc from alpha-2-macroglobulin did not restore its trypsin binding activity. Our results also indicate that the high zinc content of alpha-2-macroglobulin (320--770 microgram/g protein) reported in the literature is an artifact and that native alpha-2-macroglobulin contains approximately 150--180 microgram Zn/g protein.  相似文献   

11.
A protein proteinase inhibitor was purified from a seed extract of amaranth (Amaranthus hypochondriacus) by precipitation with (NH4)2SO4, gel-filtration chromatography, ion-exchange chromatography, and reverse-phase high-performance liquid chromatography. It is a 69-amino acid protein with a high content of valine, arginine, and glutamic acid, but lacking in methionine. The inhibitor has a relative molecular weight of 7400 and an isoelectric point of 7.5. It is a serine proteinase inhibitor that recognizes chymotrypsin, trypsin, and trypsin-like proteinase activities extracted from larvae of the insect Prostephanus truncatus. This inhibitor belongs to the potato-I inhibitor family, showing the closest homology (59.5%) with the Lycopersicum peruvianum trypsin inhibitor, and (51%) with the proteinase inhibitor 5 extracted from the seeds of Cucurbita maxima. The position of the lysine-aspartic acid residues present in the active site of the amaranth inhibitor are found in almost the same relative position as in the inhibitor from C. maxima.  相似文献   

12.
Organic molecules both coexist and interact with inorganic crystal lattices in biomineralizing tissues. Mineral precipitation and crystal morphology are tightly regulated by the actions of these molecules. Polyacrylamide gel electrophoresis studies on water soluble extracts from the cuticle of Callinectes sapidus (Atlantic blue crab) reveal the presence, in unmineralized nascent premolt cuticle, of proteins which are absent in the mineralized postmolt cuticle. In the present studies, homogenates from both premolt and postmolt C. sapidus cuticles have been tested for their effect on the in vitro precipitation of calcium carbonate. The role of protein in this process was determined by heat pretreatment and trypsin pretreatment of the cuticle homogenates prior to the precipitation assay. The results from these experiments indicate that proteins, with molecular weights of approximately 75,000 and between 10,000 and 20,000, concentrated in the C. sapidus premolt cuticle, inhibit calcium carbonate precipitation in vitro. The inhibitory activity of these proteins appears to be a result of specific interactions since trypsin, myoglobin, and ovalbumin are not inhibitory. The presence of lower amounts of these inhibitory proteins in C. sapidus postmolt cuticle may be responsible for the subsequent mineralization of this tissue.  相似文献   

13.
The major inhibitor of trypsin in seeds of Prosopsis juliflora was purified by precipitation with ammonium sulphate, ion-exchange column chromatography on DEAE- and CM-Sepharose and preparative reverse phase HPLC on a Vydac C-18 column. The protein inhibited trypsin in the stoichiometric ratio of 1:1, but had only weak activity against chymotrypsin and did not inhibit human salivary or porcine pancreatic alpha-amylases. SDS-PAGE indicated that the inhibitor has a Mr of ca 20,000, and IEF-PAGE showed that the pI is 8.8. The complete amino acid sequence was determined by automatic degradation, and by DABITC/PITC microsequence analysis of peptides obtained from enzyme digestions of the reduced and S-carboxymethylated protein with trypsin, chymotrypsin, elastase, the Glu-specific protease from S. aureus and the Lys-specific protease from Lysobacter enzymogenes. The inhibitor consisted of two polypeptide chains, of 137 residues (alpha chain) and 38 residues (beta chain) linked together by a single disulphide bond. The amino acid sequence of the protein exhibited homology with a number of Kunitz proteinase inhibitors from other legume seeds, the bifunctional subtilisin/alpha-amylase inhibitors from cereals and the taste-modifying protein miraculin.  相似文献   

14.
Titration experiments were employed to measure the binding stoichiometry of alpha 2M for trypsin at high and low concentrations of reactants. These titration experiments were performed by measuring the SBTI-resistant trypsin activity and by direct binding measurements using 125I-labeled trypsin. The binding stoichiometry displayed a marked dependence upon protein concentration. At high alpha 2M concentrations (micromolar), 2 mol of trypsin are bound/mol of inhibitor. However, at low alpha 2M concentrations (e.g., 0.5 nM), only 1.3 mol of trypsin were bound/mol of inhibitor. Sequential additions of subsaturating amounts of trypsin to a single aliquot of alpha 2M also resulted in a reduction in the final binding ratio. A model has been formulated to account for these observations. A key element of this model is the observation that purified 1:1 alpha 2M-proteinase complexes are not capable of binding a full mole of additional proteinase [Strickland et al. (1988) Biochemistry 27, 1458-1466]. The model predicts that once the 1:1 alpha 2M-proteinase complex forms, this species undergoes a time-dependent conformational rearrangement to yield a complex with greatly reduced proteinase binding ability. According to this model, the ability of alpha 2M to bind 2 mol of proteinase depends upon the association rate of the second enzyme molecule with the binary (1:1) complex, the enzyme concentration, and the rate of the conformational alteration that occurs once the initial complex forms. Modeling experiments suggest that the magnitude of the rate constant for this conformational change is in the order of 1-2 s-1.  相似文献   

15.
By chemical analyses at the eutrophic Wallersee (Austria) a considerable precipitation of calcite during autumn overturn was found. It is a pure anorganic calcite precipitation, caused by the loss of free carbonic acid to the atmosphere during the mixing of epilimnic and hypolimnic water. An essential coprecipitation of phosphorus with the anorganic calcite precipitation could be shown by calcium and phosphorus balances and by SEM investigations. During the epilimnic biogenic calcite precipitation (in summer) phosphorus coprecipitation makes 0.19% of the calcium fallout. Phosphorus coprecipitation increases up to 0.42 % during the anorganic calcite precipitation when autumn overturn takes place. With respect to the total phosphorus sedimentation in the lake 25 % are coprecipitated with calcite.  相似文献   

16.
This study describes the identification and characterization of a soluble interleukin-1 (IL-1) binding protein in the conditioned media from Raji human B-lymphoma cells. The soluble IL-1 binding material was isolated by IL-1 affinity chromatography, and treatment with trypsin decreased its ability to bind to IL-1 demonstrating its protein nature. The soluble IL-1 binding protein was specific for IL-1 and was able to discriminate between Il-1 alpha and IL-1 beta in a manner analogous to the membrane-bound Raji IL-1 receptor. The specificity of the IL-1 binding protein was further established in two ways. 1) Cell-free supernatants from Raji "receptor-negative" cells did not contain any IL-1 binding protein, thus ruling out nonspecific interactions between IL-1 and a serum or other protein present in the conditioned medium; and 2) the soluble binding protein inhibited IL-1 binding to Raji cells in a dose-dependent manner. Scatchard analysis of IL-1 beta binding showed the dissociation constant (KD) to be 5.1 nM for the soluble IL-1 binding protein compared with 0.8 nM for the membrane-bound IL-1 receptor. Gel chromatography of the soluble binding protein yielded a major peak of IL-1 binding activity with a molecular mass of 35-45 kDa. The characteristics of the soluble IL-1 binding protein described above are consistent with those of the extracellular binding domain of the membrane-bound Raji IL-1 receptor.  相似文献   

17.
O6-alkylguanine-DNA-alkyltransferase (ATase) activity was increased in rat liver from 80 to 320 fmoles/mg total protein 48 h after administration of 2-acetylaminofluorene at 60 mg/kg body weight. This tissue was used as a source of ATase which was purified by ammonium sulphate precipitation and DNA-cellulose, molecular exclusion and ion exchange chromatography (IEC). IEC purified material showed a major 24 kDa band after polyacrylamide gel electrophoresis (PAGE) with silver staining. Fluorography of purified ATase following incubation with [3H]-methylated substrate DNA and PAGE showed a single band at 24 kDa suggesting that, as with bacterial ATases, the protein itself accepts the alkyl group from O6-alkylguanine in substrate DNA during the repair reaction. Further purification of the protein using reverse phase HPLC resulted in a single peak representing approximately 125,000 fold purification. This was subjected to amino-terminal sequencing and it was found that the protein was blocked at the amino-terminal end: it was cleaved using trypsin or cyanogen bromide and the amino acid sequence of several reverse phase HPLC purified fragments was determined.  相似文献   

18.
A model for the mechanism of protein precipitation by caprylic acid (CA) is developed on the basis of quantitative assays of precipitation with bovine serum albumin (BSA) and CA at different concentrations. It was found that the effect of CA is due to direct interaction with the precipitating protein. Maximum precipitation was achieved when the mass ratio of CA-BSA was close to 1, equivalent to about 450 CA molecules per molecule of BSA. This value was confirmed by optimizing the CA purification of immunoglobulins from equine blood plasma. With a sample diluted 1:1, it was found that CA at a final concentration of 3.5% is optimal to obtain immunoglobulins essentially free of albumin by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It is proposed that CA binds to specific sites of the protein, thereby inducing partial unfolding of the protein, which exposes additional binding sites. More CA molecules incorporate into all sites in the form of mixed micelles. Thus, the interfacial protein surface becomes highly hydrophobic and increases protein-protein attraction, causing association and precipitation of the macromolecular complexes.  相似文献   

19.
The subdomain structure of the p50 subunit of NF-kappa B (amino acids 35-381) was investigated by partial proteolysis of the native protein. Trypsin cleaves p50 at a limited number of sites with an initial cleavage at low trypsin concentration occurring after R362 and a second cleavage taking place at higher trypsin concentration after K77. The cleavage after R362 does not alter the DNA binding characteristics of p50 but removes the nuclear localisation signal indicating that this region occupies a highly exposed position on the surface of the protein. The second cleavage after K77 generates a protein that although dimeric is incapable of binding DNA, thus emphasising the importance of residues 35-77 in DNA recognition. However p50 dimers containing one molecule cleaved after K77 and one molecule with this region intact are capable of binding DNA. When very high concentrations of trypsin are employed p50 is completely degraded. However if p50 is bound tightly to DNA containing its specific recognition site prior to trypsin addition the cleavage after K77 is almost completely blocked and the protein becomes highly resistant to proteolysis. These data suggest that bound DNA may mask critical trypsin cleavage sites or that DNA binding is accompanied by a conformational change in protein structure that renders the protein resistant to proteolysis.  相似文献   

20.
Amino acid sequence of crayfish (Astacus fluviatilis) trypsin If   总被引:3,自引:0,他引:3  
The complete amino acid sequence of trypsin from the crayfish Astacus fluviatilis has been determined. The protein was fragmented with cyanogen bromide after S-carboxymethylation of the reduced disulfide bonds and by trypsin after S-carboxymethylation as well as after succinylation of lysine residues and aminoethylation of the reduced disulfide bonds. Peptides were purified by gel filtration and by reversed-phase high-performance liquid chromatography. Stepwise degradation was performed in a spinning cup sequencer. The enzyme contains 237 amino acid residues and has a molecular weight of 25 030. In contrast to bovine trypsin, it contains three rather than six disulfide bonds which are paired in the same fashion as those in trypsin from Streptomyces griseus. The constituents of the active site of bovine trypsin are present in corresponding positions in the crayfish enzyme. Crayfish trypsin shows 43.6% sequence identity with the bovine enzyme as compared to 40.0% identity with the S. griseus enzyme. The present analysis affords the first detailed view into the evolution of trypsins at the invertebrate level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号