首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A map of the positions of 12 of the 21 proteins of the 30 S ribosomal subunit of Escherichia coli (S1, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12 and S15), based on neutron scattering, is presented and discussed. Estimates for the radii of gyration of these proteins in situ are also obtained. It appears that many ribosomal proteins have compact configurations in the particle.  相似文献   

2.
The results of neutron distance measurement involving ribosomal protein S1 from Escherichia coli are reported. These data provide a position for S1 on the small ribosomal subunit. They also indicate that S1, bound to the ribosome, has a radius of gyration of 60 to 65 Å, suggesting that its axial ratio in the bound state is similar to that it has as a free molecule in solution; namely, 10: 1. The implications of these results for our understanding of the mode of action of S1 are discussed.  相似文献   

3.
Antisera specific for protein synthesis initiation factors IF1, IF2, and IF3 were prepared by immunizing rabbits. When crude cell lysates are analyzed by double immunodiffusion or by immunoelectrophoresis, each antiserum forms a single precipitin line antigenically identical to its cognate factor. The antisera do not crossreact with other initiation factors or with ribosomal proteins. A radioimmune assay was developed for each initiation factor by using the specific antisera and radioactive factors prepared by reductive alkylation with [14C]formaldehyde. The assays detect as little as 10 to 30 ng of factor. Initiation factor concentrations were measured in crude Escherichin coli MRE600 extracts prepared from cells grown exponentially in a rich medium. The three initiation factors are present in approximately stoichiometric amounts and comprise about 1% of the cell protein. The molar ratio of initiation factors to ribosomes is about 0.15, which corresponds to the concentration of native ribosomal subunits.  相似文献   

4.
The ribosomal RNA genes of Triturus vulgaris meridionalis (Amphibia, Urodela) show the peculiar feature of being clustered not only at the nucleolar organizer, present in the species at a definite chromosome location, but also at "additional ribosomal sites" which are highly variable in number and chromosomal distribution among individuals. The additional ribosomal sites are most often found at specific chromosome regions, such as telomeres, C-bands and centromeres, in virtually all the chromosomes. With increasing numbers of additional clusters, the genomic dosages of ribosomal RNA genes are found to increase over a tenfold range, though not linearly. At a molecular level, the ribosomal DNA repeats differ in size because of discrete variations in the length of the non-transcribed spacers. However, the resulting length heterogeneity of the gene family is rather limited within a single genome as well as within the species. Many of the ribosomal loci appear to be internally homogeneous with respect to the repeat length. Moreover, separate clusters from distant genomic regions can share the same size class of ribosomal repeats even in the same specimen. The nucleolar organizer is mostly endowed with "shorter" ribosomal repeating units, ranging in size from 13.7 X 10(3) to 15.2 X 10(3) base-pairs. The additional ribosomal sites are characterized by the occurrence of "longer" repeats, ranging in size from 16.2 X 10(3) to 19.7 X 10(3) base-pairs. The "shorter" class of ribosomal repeats is always detected in the amplified ribosomal DNA, suggesting that the nucleolar organizer locus is involved in the amplification process in most oocytes. "Longer" ribosomal repeats are also detectable in the amplified ribosomal DNA of a few females.  相似文献   

5.
The co-operative interaction of 30 S ribosomal subunit proteins S6, S8, S15 and S18 with 16 S ribosomal RNA from Escherichia coli was studied by (1) determining how the binding of each protein is influenced by the others and (2) characterizing a series of protein-rRNA fragment complexes. Whereas S8 and S15 are known to associate independently with the 16 S rRNA, binding of S18 depended upon S8 and S15, and binding of S6 was found to require S8, S15 and S18. Ribonucleoprotein (RNP) fragments were derived from the S8-, S8/S15- and S6/S8/S15/S18-16 S rRNA complexes by partial RNase hydrolysis and isolated by electrophoresis through Mg2+-containing polyacrylamide gels or by centrifugation through sucrose gradients. Identification of the proteins associated with each RNP by gel electrophoresis in the presence of sodium dodecyl sulfate demonstrated the presence of S8, S8 + S15 and S6 + S8 + S15 + S18 in the corresponding fragment complexes. Analysis of the rRNA components of the RNP particles confirmed that S8 was bound to nucleotides 583 to 605 and 624 to 653, and that S8 and S15 were associated with nucleotides 583 to 605, 624 to 672 and 733 to 757. Proteins S6, S8, S15 and S18 were shown to protect nucleotides 563 to 605, 624 to 680, 702 to 770, 818 to 839 and 844 to 891, which span the entire central domain of the 16 S rRNA molecule (nucleotides 560 to 890). The binding site for each protein contains helical elements as well as single-stranded internal loops ranging in size from a single bulged nucleotide to 20 bases. Three terminal loops and one stem-loop structure within the central domain of the 16 S rRNA were not protected in the four-protein complex. Interestingly, bases within or very close to these unprotected regions have been shown to be accessible to chemical and enzymatic probes in 30 S subunits but not in 70 S ribosomes. Furthermore, nucleotides adjacent to one of the unprotected loops have been cross-linked to a region near the 3' end of 16 S rRNA. Our observations and those of others suggest that the bases in this domain that are not sequestered by interactions with S6, S8, S15 or S18 play a role involved in subunit association or in tertiary interactions between portions of the rRNA chain that are distant from one-another in the primary structure.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
A simple procedure is described for the purification in high yields of protein synthesis initiation factors IF1, IF2, and IF3 from Escherichia coli strain MRE 600. IF2 was separated from IF1 and IF3 by ammonium sulfate fractionation and was purified by column chromatography on phosphocellulose and diethylaminoethyl (DEAE) Sephadex. IF1 and IF3 were separated by phosphocellulose column chromatography. IF1 was purified by molecular sieve chromatography, and IF3 by phosphocellulose column chromatography in urea buffer. Each factor was analyzed by sodium dodecyl sulfate or urea polyacrylamide gel electrophoresis and was greater than 98% pure. Only one form of IF1 and IF3 was found, with molecular weights of 8,500 and 22,500, respectively. Two forms of IF2 were isolated: IF2a with a molecular weight of 118,000 and IF2b with a molecular weight of 90,000. The amino acid composition of each factor was determined, and their stimulation in a variety of assays for initiation of protein synthesis is reported.  相似文献   

7.
8.
We present evidence that repair of DNA damage induced by decay of incorporated 125I after replication of the labeled duplex of Escherichia coli requires the recA+ gene function. Furthermore, only about half of the cells survive after label segregation even when that repair function is present. Our results support the possibility that repair of 125I decay-induced lesions is asymmetric, being limited to damage initiated in only one of the two strands of the DNA duplex.  相似文献   

9.
10.
To investigate the physical organization of ribosomal RNA genes of two bobbed (bb) loci carried by the Dp(1;f)122 free duplication, a wild type and a deleted one derived from it, genomic DNAs from XXNO-/Dp122bb+ and XXNO-/Dp122bb adult females were analyzed by restriction enzyme digestions. We found that in the bb mutant there was a loss of uninterrupted genes, while genes interrupted by type I and type II insertions remained apparently unchanged. This is an indication that at least in this wild type bb+ locus, carried by the 122 free duplication, the different repeating units are not distributed randomly. In fact, after digestion of the rDNA carried by the bb+ duplication with the enzyme BamHI that cuts only in type I insertions, we have obtained long uncleaved fragments of DNA containing uninterrupted genes.  相似文献   

11.
12.
13.
Kinetic studies on the RNase T1-catalyzed transesterification of 12 dinucleoside monophosphates, Np1N2 (N1 = A, C, and U; N2 = A, C, G, and U) at pH 5, 25 °C, and 0.2 m ionic strength, revealed that the catalytic efficiency (kcatKm) for GpN substrates (H. L. Osterman, and F. G. Walz, Jr., 1978, Biochemistry, 17, 4142) was ~106-fold greater than corresponding ApNs and at least 108-fold greater than corresponding CpNs and UpNs. The catalytic activity with ApN substrates survives phenol extraction which indicates (along with other criteria) that it is intrinsic to RNase T1 and is not due to trace contamination by other nucleases. Circumstantial evidence is presented which suggests that homologous GpN and ApN substrates bind productively at different sites on the enzyme. The results of steady-state kinetic studies of RNase T1 with IpNs (N = C and U) were compared with those for GpNs and indicated that the primary effect of the guanine 2-NH2 group is to enhance substrate binding at the primary recognition site by ~2.6 kcal/mol. Values of (kcatKm) showed the order NpC > NpU (N = A, G, and I) which evidences the existence of a subsite for the leaving nucleoside group that prefers cytidine: interactions at this subsite are reflected in kcat rather than Km.  相似文献   

14.
RNA extracted by cold phenol from the large cytoplasmic ribosomal subunit of the trypanosomatid flagellate Crithidia fasciculata and analyzed by polyacrylamide gel electrophoresis at 4 °C consisted of one species with a molecular weight of 1.3 × 106 (relative to ribosomal RNA from E. coli MRE 600). When extracted with hot phenol (65 °C), the large ribosomal subunit gave rise to two components with molecular weights of 0.72 and 0.56 × 106. On heating for 60 s, followed by rapid cooling, the single cold-phenol-extracted 1.30 × 106-dalton species completely dissociated into two components of molecular weights 0.72 and 0.56 × 106, present in equimolar amounts. When analyzed by polyacrylamide-agarose gel electrophoresis in the presence of SDS, RNA extracted by cold phenol from the large cytoplasmic ribosomal subunit consisted of three components of molecular weights 1.3, 0.72, and 0.56 × 106, present in apparently equimolar amounts. RNA from the small cytoplasmic ribosomal subunit consisted of one species with a molecular weight of 0.84 × 106, independent of extraction or analytical conditions. It is proposed that under high salt and low temperature conditions, the large ribosomal RNA molecule is held together by its secondary structure, and that denaturing extraction or analytical conditions reveal an otherwise “hidden” lesion present in the molecule in vivo.  相似文献   

15.
Intermediates of chromosomal DNA replication in Escherichia coli   总被引:2,自引:0,他引:2  
The product of bacteriophage T4 gene 63 has two activities, one which catalyzes the attachment of tail fibers to base plates during morphogenesis (TFA) and one which catalyzes the joining of single-stranded polynucleotides (RNA ligase). The only phenotype attributed to mutations in gene 63 is a defect in attachment of tail fibers leading to fiberless T4 particles. However, it is suspected that TFA and RNA ligase are unrelated activities of the same protein since they have very different requirements in vitro.We have isolated new mutants which have lost the RNA ligase but have retained the TFA activity of the product of gene 63. These mutants exhibit defects in T4 DNA replication and late gene expression in some strains of Escherichia coli. This work allows us to draw three conclusions: (1) the TFA and RNA ligase activities are unrelated functions of the gene 63 product making this the prototype for a protein which has more than one unrelated function; (2) the RNA ligase is probably involved in DNA metabolism rather than RNA processing as has been proposed: (3) the RNA ligase and polynucleotide 5′ kinase 3′ phosphatase of T4 perform intimately related functions.  相似文献   

16.
The relative quantities of 26 known transfer RNAs of Escherichia coli have been measured previously (Ikemura, 1981). Based on this relative abundance, the usage of cognate codons in E. coli genes as well as in transposon and coliphage genes was examined. A strong positive correlation between tRNA content and the occurrence of respective codons was found for most E. coli genes that had been sequenced, although the correlation was less significant for transposon and phage genes. The dependence of the usage of isoaccepting tRNA, in E. coli genes encoding abundant proteins, on tRNA content was especially noticeable and was greater than that expected from the proportional relationship between the two variables, i.e. these genes selectively use codons corresponding to major tRNAs but almost completely avoid using codons of minor tRNAs. Therefore, codon choice in E. coli genes was considered to be largely constrained by tRNA availability and possibly by translational efficiency. Based on the content of isoaccepting tRNA and the nature of codon-anticodon interaction, it was then possible to predict for most amino acids the order of preference among synonymous codons. The synonymous codon predicted in this way to be the most preferred codon was thought to be optimized for the E. coli translational system and designated as the “Optimal codon”. E. coli genes encoding abundant protein species use the optimal codons selectively, and other E. coli genes, such as amino acid synthesizing genes, use optimal and “non-optimal” codons to a roughly equal degree. The finding that the frequency of usage of optimal codons is closely correlated with the production levels of individual genes was discussed from an evolutionary viewpoint.  相似文献   

17.
18.
Reconstitution of Escherichia coli RNA polymerase was found to be markedly enhanced by DNA as well as by the σ subunit. Among discrete steps of subunit assembly, formation of the primary intermediate α2β complex and subsequent association of the complex with the β′ subunit are not affected by the presence of DNA and the σ subunit; the α2ββ′ complex thus formed, however, is virtually inactive and is subject to temperature-dependent activation by DNA and the σ subunit. The α2ββ′ complex is, therefore, a secondary intermediate in the sequence of enzyme formation, or a premature form of core enzyme.In the course of activation of the premature core complex, the subunit σ interacts with both the α2β complex and the β′ subunit; DNA acts in much the same way. The enzyme, reconstituted in the presence of DNA, is recovered attached to the DNA, added as an enhancer, and initiates RNA synthesis without prior release from the DNA. A limited number of unique DNA sites appear to be concerned with the enzyme maturation.  相似文献   

19.
Xanthosine 5′-phosphate (XMP)-amidotransferase catalyzes the formation of guanosine 5′-phosphate (GMP) by aminating XMP with either the amide group of glutamine (amidotransferase) or ammonia (aminase). The glutamine-supported activity of the purified enzyme from Escherichia coli has been studied, and its properties have been compared with those of other amidotransferases. The following results have been obtained. (i) The glutamine analog, 6-diazo-5-oxo-l-norleucine (DON), irreversibly inhibits the amidotransferase activity. A maximal rate of inhibition by DON is achieved in the presence of XMP, ATP, and Mg2+ with a pseudo-first-order rate constant of 0.276 min?1. (ii) The total number of sulfhydryl groups is approximately 22 per dimer (126,000 Mr). In the absence of substrates, about 8 sulfhydryl groups per dimer are titratable with 5,5-dithiobis(2-nitrobenzoic acid) (DTNB), and in the presence of XMP, ATP, and Mg2+ an additional 6 cysteine residues per dimer become exposed. When the amidotransferase activity is inactivated by DON, only 8 sulfhydryl groups are titratable. DTNB, p-chloromercuribenzoate, and bromopyruvate all selectively inactivate the amidotransferase activity. These results are consistent with the hypothesis that cysteine residues which are exposed by the substrates are involved in the amidotransferase activity. (iii) The purified XMP amidotransferase contains a glutaminase activity which can be measured in the absence of GMP formation. The glutaminase activity requires XMP, Mg2+, and either psicofuranine, an analog of adenosine, or inorganic pyrophosphate (PPi) and is inhibited by p-chloromercuribenzoate and DON. Maximal stimulation is observed with 100 μm psicofuranine or PPi, and there is no further stimulation in the presence of both effectors. The apparent Km is 31 μm with PPi and 13 μm with psicofuranine; the V for glutamine hydrolysis is about 60% of the rate of the amidotransferase activity. The cooperative interactions between the binding of PPi and psicofuranine have been confirmed. In the presence of 2.5 μm psicofuranine the Km for PPi is reduced 20-fold, but the maximal velocity is unchanged. Similarly, the apparent Km for psicofuranine is reduced by low concentrations (10 μm) of PPi. The “uncoupling” of the hydrolysis of glutamine from the amination of XMP is the basis for the reported inhibitory effects of psicofuranine and PPi on the amidotransferase activity. (iv) Tris buffer selectively inhibits the XMP-amidotransferase activity by inhibiting the glutaminase activity. This inhibition is time dependent and reversible and may explain the previous reports on the inability of this enzyme to use glutamine as a substrate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号