首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the moss Physcomitrella patens, transforming DNA containing homologous sequences integrates predominantly by homologous recombination with its genomic target. A systematic investigation of the parameters that determine gene targeting efficiency shows a direct relationship between homology length and targeting frequency for replacement vectors (a selectable marker flanked by homologous DNA). Overall homology of only 1 kb is sufficient to achieve a 50% yield of targeted transformants. Targeting may occur through homologous recombination in one arm, accompanied by non-homologous end-joining by the other arm of the vector, or by allele replacement following two homologous recombination events. Allele replacement frequency depends on the symmetry of the targeting vector, being proportional to the length of the shorter arm. Allele replacement may involve insertion of multiple copies of the transforming DNA, accompanied by ectopic insertions at non-homologous sites. Single-copy and single insertions at targeted loci (targeted gene replacements, ‘TGR’) occur with a frequency of 7–20% of all transformants when the minimum requirements for allele replacement are met. Homologous recombination in Physcomitrella is substantially more efficient than in any multicellular eukaryote, recommending it as the outstanding model for the study of homologous recombination in plants.  相似文献   

2.
A transformation scheme for Cryptococcus neoformans to yield high-frequency, integrative events was developed. Adenine auxotrophs from a clinical isolate of C. neoformans serotype A were complemented by the cryptococcal phosphoribosylaminoimidazole carboxylase gene (ade2) with a biolistic DNA delivery system. Comparison of two DNA delivery systems (electroporation versus a biolistic system) showed notable differences. The biolistic system did not require linear vectors and transformed each auxotrophic strain at similar frequencies. Examination of randomly selected transformants by biolistics showed that 15 to 40% were stable, depending on the recipient auxotroph, with integrative events identified in all stable transformants by DNA analysis. Although the ade2 cDNA copy transformed at a low frequency, DNA analysis found homologous recombination in each of these transformants. DNA analysis of stable transformants receiving genomic ade2 revealed ectopic integration in a majority of cases, but approximately a quarter of the transformants showed homologous recombination with vector integration or gene replacement. This system has the potential for targeted gene disruption, and its efficiency will also allow for screening of DNA libraries within C. neoformans. Further molecular strategies to study the pathobiology of this pathogenic yeast are now possible with this transformation system.  相似文献   

3.
Summary We examined the influence of DNA form and size on the arrangement and genomic location of transforming DNA sequences in the basidiomycete Coprinus cinereus. Protoplasts with either single or double mutations in the tryptophan synthetase (TRPI) gene were transformed with cloned copies of this gene which contained only a single DNA strand, contained a specific single nick within the C. cinereus sequences (4.8 kb), contained a specific double-strand break, or contained an additional 35 kb of flanking genomic sequences. Gene replacement events were recovered when each DNA type was used. However, none of these substrates offers a substantial improvement in transformation or targeting frequency when compared to supercoiled circular DNA, which has allowed recovery of both gene replacements as well as homologous insertions in 5 % of the transformants analyzed. The frequency of transformants carrying tandem insertions with multiple copies of the transforming DNA was reduced when single-stranded DNA was used, and increased when DNA containing double-strand breaks was used. These results have important implications for the efficient design of targeted transformation and co-transformation experiments.  相似文献   

4.
An integration plasmid, pIARL28, containing the ribosomal DNA gene as a homologous recombination sequence was constructed for introduction of the alpha-acetolactate decarboxylase gene into brewer's yeast. The transformation efficiency of pIARL28 was 20- to 50-fold higher than those of the other YIp vectors, as yeast cells had approximately 140 copies of the ribosomal DNA gene. All transformants showed very high alpha-acetolactate decarboxylase activity due to the multiple integrated copies of the plasmid. The transformants were grown in nonselective conditions, and segregants which had maintained the alpha-acetolactate decarboxylase expression cassette but no other vector sequences were isolated. Southern analysis showed that these marker-excised segregants contained more than 20 copies of the alpha-acetolactate decarboxylase gene and were stably maintained under nonselective conditions. Fermentation tests confirmed that the diacetyl concentration was considerably reduced in wort fermented by these marker-excised segregants. The degree of reduction was related to the copy number of the alpha-acetolactate decarboxylase gene.  相似文献   

5.
An integration plasmid, pIARL28, containing the ribosomal DNA gene as a homologous recombination sequence was constructed for introduction of the alpha-acetolactate decarboxylase gene into brewer's yeast. The transformation efficiency of pIARL28 was 20- to 50-fold higher than those of the other YIp vectors, as yeast cells had approximately 140 copies of the ribosomal DNA gene. All transformants showed very high alpha-acetolactate decarboxylase activity due to the multiple integrated copies of the plasmid. The transformants were grown in nonselective conditions, and segregants which had maintained the alpha-acetolactate decarboxylase expression cassette but no other vector sequences were isolated. Southern analysis showed that these marker-excised segregants contained more than 20 copies of the alpha-acetolactate decarboxylase gene and were stably maintained under nonselective conditions. Fermentation tests confirmed that the diacetyl concentration was considerably reduced in wort fermented by these marker-excised segregants. The degree of reduction was related to the copy number of the alpha-acetolactate decarboxylase gene.  相似文献   

6.
Intact conidia of three industrially relevant strains of Trichoderma reesei were effectively transformed by particle bombardment. Transformations were carried out individually with plasmids carrying either the fungal amdS or bacterial hph gene as a selectable marker and by cotransformation with both plasmids. Transformant yields with single plasmids were up to 11 stable transformants per microg DNA at the bombardment distance of 6 cm. Mitotic stability of the transformants was 75-100% and the cotransformation efficiency averaged 92% when the first selection was performed on hygromycin B plates. The entire procedure could be completed in 1 week with the hph marker.  相似文献   

7.
We asked if single-stranded vector DNA molecules could be used to reintroduce cloned DNA sequences into a eukaryotic cell and cause genetic transformation typical of that observed using double-stranded DNA vectors. DNA was presented to Saccharomyces cerevisiae following a standard transformation protocol, genetic transformants were isolated, and the physical state of the transforming DNA sequence was determined. We found that single-stranded DNA molecules transformed yeast cells 10- to 30-fold more efficiently than double-stranded molecules of identical sequence. More cells were competent for transformation by the single-stranded molecules. Single-stranded circular (ssc) DNA molecules carrying the yeast 2 μ plasmid-replicator sequence were converted to autonomously replicating double-stranded circular (dsc) molecules, suggesting their efficient utilization as templates for DNA synthesis in the cell. Single-stranded DNA molecules carrying 2 μ plasmid non-replicator sequences recombined with the endogenous multicopy 2 μ plasmid DNA. This recombination yielded either the simple molecular adduct expected from homologous recombination (40% of the transformants examined) or aberrant recombination products carrying incomplete transforming DNA sequences, endogenous 2 μ plasmid DNA sequences, or both (60% of the transformants examined). These aberrant recombination products suggest the frequent use of a recombination pathway that trims one or both of the substrate DNA molecules. Similar aberrant recombination products were detected in 30% of the transformants in cotransformation experiments employing single-stranded and double-stranded DNA molecules, one carrying the 2 μ plasmid replicator sequence and the other the selectable genetic marker. We conclude that single-stranded DNA molecules are useful vectors for the genetic transformation of a eukaryotic cell. They offer the advantage of high transformation efficiency, and yield the same intracellular DNA species obtained upon transformation with double-stranded DNA molecules. In addition, single-stranded DNA molecules can participate in a recombination pathway that trims one or both DNA recombination substrates, a pathway not detected, at least at the same frequency, when transforming with double-stranded DNA molecules  相似文献   

8.
A transformation vector, pLS-hph, was constructed with the promoter and terminator of the glyceraidehyde-3-phosphate dehydrogenase (GPD) gene derived from an ectomycorrhizal basidiomycete, Lyophyllum shimeji, and with the hygromycin B (HmB) phosphotransferase (hph) gene from Escherichia coli. This vector was introduced into protoplasts of L. shimeji and 3.4 transformants per microg plasmid DNA were obtained. In most of the transformants, multiple copies of the vector were integrated into the genomic DNA. The results indicate that pLS-hph is a useful vector for L. shimeji.  相似文献   

9.
Transformants of Fusarium graminearum were derived using linearized DNA of plasmids designed to replace the trichodiene synthase gene, a cutinase gene or a xylanase gene with a hygromycin-resistance marker cassette by homologous recombination between 1-kbp segments of flanking DNA. Most transformants did not exhibit the DNA structure expected of integration by classical double recombination. Instead, they contained linearized plasmid joined end-to-end and variably incorporated into the genome. Transformant types included ectopic integrations and integrations at the target site with or without removal of the targeted gene. We have analyzed a large number of transformants using cloning, PCR and DNA sequencing to determine the structures of their integrated DNA, and describe a model to explain their derivations. The data indicate that 1-3 copies of input DNA are first joined end-to-end to produce either linear or circular structures, probably mediated by the non-homologous end-joining (NHEJ) system. The end-joins typically have 1-5 nucleotides in common and are near or within the original cleavage site of the plasmid. Ectopic integrations occur by attaching linear DNA to two ends of genomic DNA via the same joining mechanism. Integration at the target site is consistent with replication around circularized input DNA, beginning and ending within the flanking homologous DNA, resulting in the integration of multiple copies of the entire structure. This results in deletion or duplication of the target site, or leaves one copy at either end of the integrated multimer. Reiterated DNA in the more complex structures is unstable due to homologous recombination, such that conversion to simpler forms is detected.  相似文献   

10.
We examined the fate of DNA microinjected into nuclei of cultured mammalian cells. The sequence composition and the physical form of the vector carrying the selectable gene affected the efficiency of DNA-mediated transformation. Introduction of sequences near the simian virus 40 origin of DNA replication or in the long terminal repeat of avian sarcoma provirus into a recombinant plasmid containing the herpes simplex virus thymidine kinase gene. (pBR322/HSV-tk) enhanced the frequency of transformation of LMtk- and RAT-2tk- cells to the TK+ phenotype 20- to 40-fold. In cells receiving injections of only a few plasmid DNA molecules, the transformation frequency was 40-fold higher after injection of linear molecules than after injection of supercoiled molecules. By controlling the number of gene copies injected into a recipient cell, we could obtain transformants containing a single copy or as many as 50 to 100 copies of the selectable gene. Multiple copies of the transforming gene were not scattered throughout the host genome but were integrated as a concatemer at one or a very few sites in the host chromosome. Independent transformants contained the donated genes in different chromosomes. The orientation of the gene copies within the concatemer was not random; rather, the copies were organized as tandem head-to-tail arrays. By analyzing transformants obtained by coinjecting two vectors which were identical except that in one a portion of the vector was inverted, we were able to conclude that the head-to-tail concatemers were generated predominantly by homologous recombination. Surprisingly, these head-to-tail concatemers were found in transformants obtained by injecting either supercoiled or linear plasmid DNA. Even though we demonstrated that cultured mammalian cells contain the enzymes for ligating two DNA molecules very efficiently irrespective of the sequences or topology at their ends, we found that even linear plasmid DNA was recruited into the concatemer by homologous recombination.  相似文献   

11.
The plant-pathogenic fungus Pseudocercosporella herpotrichoides has been successfully transformed by using two different positive selection systems in combination with the Escherichia coli gusA gene. The selectable markers used in this study were the hygromycin B phosphotransferase gene (hph) from E. coli and the gene (bml) for beta-tubulin from a benomyl-resistant mutant of Neurospora crassa. A lower transformation rate was obtained with the bml system than with the hph system. Conversely, cotransformation frequencies, as determined with medium plates containing the chromogenic substrate 5-bromo-4-chloro-3-indolyl-beta-D-glucuronic acid, were higher with bml than with hph as the selectable marker. The hygromycin-resistant transformants were mitotically stable, and both the selectable gene and gusA were maintained through conidiation. The vector DNA was integrated into the genome, and the number and sites of insertion varied among transformants. Enzyme assays of mycelial extracts showed that beta-glucuronidase activity was highest in transformants with a high gusA copy number. Expression of gusA during growth of the fungus on plants was easily detectable and did not affect pathogenicity. These results form the basis for construction of a versatile and sensitive reporter gene system for P. herpotrichoides.  相似文献   

12.
The plant-pathogenic fungus Pseudocercosporella herpotrichoides has been successfully transformed by using two different positive selection systems in combination with the Escherichia coli gusA gene. The selectable markers used in this study were the hygromycin B phosphotransferase gene (hph) from E. coli and the gene (bml) for beta-tubulin from a benomyl-resistant mutant of Neurospora crassa. A lower transformation rate was obtained with the bml system than with the hph system. Conversely, cotransformation frequencies, as determined with medium plates containing the chromogenic substrate 5-bromo-4-chloro-3-indolyl-beta-D-glucuronic acid, were higher with bml than with hph as the selectable marker. The hygromycin-resistant transformants were mitotically stable, and both the selectable gene and gusA were maintained through conidiation. The vector DNA was integrated into the genome, and the number and sites of insertion varied among transformants. Enzyme assays of mycelial extracts showed that beta-glucuronidase activity was highest in transformants with a high gusA copy number. Expression of gusA during growth of the fungus on plants was easily detectable and did not affect pathogenicity. These results form the basis for construction of a versatile and sensitive reporter gene system for P. herpotrichoides.  相似文献   

13.
Here, we report the use of the mating type heterokaryon incompatibility system as a counterselection to increase the probability of identifying gene replacements in Neurospora crassa. We compared the frequencies of gene replacements observed among transformants obtained by using plasmids with or without the mat a-1(+) gene (hereby called "Toxic Gene") placed adjacent to disruption cassettes. On an average, we were 20x more likely to identify a correct gene replacement by incorporating the toxic gene in our constructs. Using this strategy, we constructed strains containing a deletion of the inl (1L-myo-inositol-1-phosphate synthase) gene. Finally, we demonstrated that we were able to remove the transformation marker (the hygromycin B phosphotransferase- thymidine kinase gene fusion [hph(+)::tk(+)]) from the genome by using a strategy similar to the "URA-blaster" strategy used in yeast, which we call "tk-blaster."  相似文献   

14.
Summary We used lambda and plasmid vectors containing the am + gene in an insert of from 2.7 to 9.1 kb, to transform am point mutant and deletion strains. A total of 199 transformants were examined with the potential to yield am transformants by homologous recombination. When we used vectors that had 9.1 kb of homology with the chromosomal DNA, 30% of the transformants obtained were the result of homologous recombination regardless of whether the vector was a lambda molecule, a circular plasmid, or a plasmid that had been linearized prior to transformation. When vectors with up to 5.1 kb of homology were used, very few transformants (1 of 89 tested) resulted from homologous recombination. Of a sample of 29 ectopic integration events obtained by transformation with the 9.1 kb fragment cloned in a vector, 18 included a major part (usually almost all) of both arms of lambda with the entire Neurospora 9.1 kb insert between them. Four included only long arm sequence together with an adjacent segment of the insert containing the am gene. The remaining seven were the result of multiple integrations. There was no evidence of circularization of the vector prior to integration. All transformants that had multiple copies of the am gene appeared to be subject to the RIP process, which causes multiple mutations in duplicated sequences during the sexual cycle.  相似文献   

15.
The processing of DNA molecules during transformation was characterized in the oomycete Phytophthora infestans. Linear and circular forms of nonreplicating transformation vectors supported similar rates of stable transformation. Remarkably, digestion of plasmids within the selectable marker genes neomycin phosphotransferase (npt) or hygromycin phosphotransferase (hpt) had little effect on the recovery of drug-resistant transformants, and the cleaved sites were shown to be reconstituted in the transformants. An assay for the transient expression of β-glucuronidase (GUS) in protoplasts treated with partial or disrupted GUS genes demonstrated that active genes could be reconstituted through intramolecular and/or intermolecular ligation between compatible ends, while incompatible ends were inefficiently joined. Stable transformation studies also demonstrated that complementing portions of incomplete npt or hpt genes joined through homologous recombination. Based on the indication of efficient ligation between DNA molecules during transformation, an efficient procedure for cotransformation was developed. The frequency of cotransformation between vectors expressing selected genes (npt or hpt) and nonselected sequences (GUS, β-galactosidase, or streptomycin phosphotransferase) approached unity when the plasmids were linearized with the same restriction enzyme before transformation. In contrast, cotransformation between circular plasmids or those cut with different enzymes occurred infrequently (10%). Hybridization analysis of DNA from cotransformants demonstrated that linearized plasmids became colocalized within genomic DNA, while circular plasmids typically inserted at unliked sites.  相似文献   

16.
17.
Sequence homology is expected to influence recombination. To further understand mechanisms of recombination and the impact of reduced homology, we examined recombination during transformation between plasmid-borne DNA flanking a double-strand break (DSB) or gap and its chromosomal homolog. Previous reports have concentrated on spontaneous recombination or initiation by undefined lesions. Sequence divergence of approximately 16% reduced transformation frequencies by at least 10-fold. Gene conversion patterns associated with double-strand gap repair of episomal plasmids or with plasmid integration were analyzed by restriction endonuclease mapping and DNA sequencing. For episomal plasmids carrying homeologous DNA, at least one input end was always preserved beyond 10 bp, whereas for plasmids carrying homologous DNA, both input ends were converted beyond 80 bp in 60% of the transformants. The system allowed the recovery of transformants carrying mixtures of recombinant molecules that might arise if heteroduplex DNA--a presumed recombination intermediate--escapes mismatch repair. Gene conversion involving homologous DNAs frequently involved DNA mismatch repair, directed to a broken strand. A mutation in the PMS1 mismatch repair gene significantly increased the fraction of transformants carrying a mixture of plasmids for homologous DNAs, indicating that PMS1 can participate in DSB-initiated recombination. Since nearly all transformants involving homeologous DNAs carried a single recombinant plasmid in both Pms+ and Pms- strains, stable heteroduplex DNA appears less likely than for homologous DNAs. Regardless of homology, gene conversion does not appear to occur by nucleolytic expansion of a DSB to a gap prior to recombination. The results with homeologous DNAs are consistent with a recombinational repair model that we propose does not require the formation of stable heteroduplex DNA but instead involves other homology-dependent interactions that allow recombination-dependent DNA synthesis.  相似文献   

18.
In this study, the efficiency of gene replacement in Aspergillus awamori between Agrobacterium-mediated transformation and CaCl(2)/PEG-mediated transformation was compared. For the genes, pyrG and gfaA, it was found that the homologous recombination frequencies obtained by Agrobacterium-mediated transformation were 3- to 6-fold higher than the frequencies obtained with CaCl(2)/PEG protoplast transformation. For the pyrG gene, it was found that Agrobacterium-mediated transformation allowed an efficient homologous recombination with shorter DNA flanks than CaCl(2)/PEG protoplast transformation. Finally, the addition of the dominant amdS marker as a second selection marker to the gene replacement cassette led to a further 2-fold enrichment in transformants with gene replacement events, resulting in a gene replacement frequency of 55%. Based on the data it can be concluded that Agrobacterium-mediated transformation is an efficient tool for gene replacement and that the amdS gene can be successfully used as a second selection marker to select transformants with putative gene replacement.  相似文献   

19.
Agrobacterium tumefaciens-mediated transformation (agro-transformation) was successfully applied to the entomogenous fungus Beauveria bassiana. Conidia of B. bassiana were transformed to hygromycin B resistance using the hph gene of Escherichia coli as the selective trait, under the control of a heterologous fungal promoter and the Aspergillus nidulans trpC terminator. The efficiency of transformation was up to 28 and 96 transformants per 10(4) and 10(5) target conidia, respectively, using three distinct vectors. High mitotic stability of the transformants (80-100%) was demonstrated after five successive transfers on a nonselective medium. Abortive transformants were observed for all the hph(r) vectors used. Putative transformants were analysed for the presence of the hph gene by PCR and Southern analysis. The latter analysis revealed the integration of two or more copies of the hph gene in the genome. The agro-transformation method was found to be effective for the isolation of B. bassiana hygromycin resistant transformants and may represent a useful tool for insertional mutagenesis studies in this fungus.  相似文献   

20.
目的构建新生隐球菌COP9复合体蛋白元件Csn6的基因同源重组敲除框,并通过基因枪转化系统敲除CSN6基因。方法应用生物信息学方法获得COP9复合体蛋白元件的基因信息,采用套叠PCR的方法,构建包含报告基因NEO和CSN6基因ORF两侧上下游同源DNA片段的同源重组框。应用基因枪将其转化入新生隐球菌感受态细胞,通过PCR和DNA测序对遗传霉素(G418)耐受的阳性克隆子进行筛选与验证。结果成功构建了新生隐球菌基因突变株csn6裣。结论 COP9复合体亚基CSN6基因突变株的构建,为今后新生隐球菌COP9复合体的分子致病机制研究奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号