首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sperm whale oxymyoglobin was isolated directly from muscle and was examined for its stability properties over the wide range of pH 5–13 in 0.1 m buffer at 25 °C. The remarkable pH dependence for the autoxidation rate was analyzed using the kinetic equation derived in terms of nucleophilic displacement processes of O2? from oxymyoglobin by the entering water molecule or hydroxyl ion with the iron resulting in the ferric form. Most of the autoxidation reaction of the oxymyoglobin can be best explained by the proton-catalyzed processes involving the distal histidine as the catalytic residue. The kinetic equation could also be used as an interesting diagnostic probe into differences in the heme reactivity and the heme environment of different types of oxymyoglobin from other sources.  相似文献   

2.
3.
4.
5.
The diffusion of molecular oxygen or its isosteric analogue, carbon monoxide, from the surface of myoglobin to its deeply imbedded haem appears to represent one of the simplest protein functions. Hence, it was chosen for the study of the possible role of a global controlling effect like an attractor. However, whereas the six statistical criteria of the classical non-linear dynamic analysis for the existence of an attractor in myoglobin were fulfilled and invariant to the Fourier transformation, the properties of this attractor were not as simple as anticipated. The parameters were tested and confirmed by alternative approaches, the interpoint distance method of Judd and Fourier transformation. If the diffusion were approximately linear, the order of the attractor would be expected to be near one. However, a clearly higher value, 1.46+/-0.03, was found, indicating the existence of additional steps. Later, the latter were identified as a 90 degrees rotation of CO followed by a translocation by 0.4 A to a transient pocket. These additional steps may explain the high number of regulatory factors found, 10+/-1. The autocorrelation function was damped with a correlation length of at least 20 residues. The Poincaré plot showed a dense domain compatible with the cross-section of a quasi-spherical attractor. The first Lyapunov exponent, lambda(1), was clearly positive. The Hurst fractal coefficient was 1.90+/-0.22, indicating a clear departure from simple linear diffusion.  相似文献   

6.
The electron transfer between the excited triplet state of zinc-substituted sperm whale myoglobin and Cu2+ has been studied by following the decay rate of delayed fluorescence. The Cu2+ bound on the surface of the myoglobin molecule are efficient quenchers of the excited electron state of Zn-myoglobin. Two bimolecular rate constants of quenching (KQ) for every pH investigated have been calculated. The pH-dependence of KQ1 indicates that the protonation of one amino acid residue (His-GH1 (119] is important for the process. Our results support the idea of the common nature of the mechanism of quenching by Cu2+ and oxidation of oxymyoglobin by Cu2+.  相似文献   

7.
An experimental-theoretical approach for the elucidation of protein stability is proposed. The theoretical prediction of pH-dependent protein stability is based on the macroscopic electrostatic model for calculation of the pH-dependent electrostatic free energy of proteins. As a test of the method we have considered the pH-dependent stability of sperm whale metmyoglobin. Two theoretical methods for evaluation of the electrostatic free energy and p K values are applied: the finite-difference Poisson-Boltzmann method and the semiempirical approach based on the modified Tanford-Kirkwood theory. The theoretical results for electrostatic free energy of unfolding are compared with the experimental data for guanidine hydrochloride unfolding under equilibrium conditions over a wide pH range. Using the optical parameters of the Soret absorbance to monitor conformational equilibrium and Tanford's method to estimate the resulting data, it was found that the conformational free energy of unfolding of metmyoglobin is 16.3 kcal mol(-1) at neutral pH values. The total unfolding free energies were calculated on the basis of the theoretically predicted electrostatic unfolding free energies and the experimentally measured midpoints (pH(1/2)) of acidic and alkaline denaturation transitions. Experimental data for alkaline denaturation were used for the first time in theoretical analysis of the pH-dependent unfolding of myoglobin. The present results demonstrate that the simultaneous application of appropriate theoretical and experimental methods permits a more complete analysis of the pH-dependent and pH-independent properties and stability of globular proteins.  相似文献   

8.
Functional effects of heme orientational disorder in sperm whale myoglobin   总被引:2,自引:0,他引:2  
The optical absorption and ligand binding properties of newly reconstituted sperm whale myoglobin were examined systematically at pH 8, 20 degrees C. The conventional absorbance and magnetic circular dichroism spectra of freshly reconstituted samples were identical to those of the native protein. In contrast, reconstituted azide or CO myoglobin initially exhibited less circular dichroism in the Soret wavelength region than native myoglobin. These data support the theory proposed by La Mar and co-workers (La Mar, G. N., Davis, N. L., Parish, D. W., and Smith, R. M. (1983) J. Mol. Biol. 168, 887-896) that protoheme inserts into apomyoglobin in two distinct orientations. The equilibrium and kinetic parameters for O2 and CO binding to newly reconstituted myoglobin were observed to be identical to those of the native protein. Thus, the orientation of the heme group has no effect on the physiological properties of myoglobin. This result is in disagreement with the preliminary report of Livingston et al. (Livingston, D. J., Davis, N. L., La Mar, G. N., and Brown, W. D. (1984) J. Am. Chem. Soc. 106, 3025-3026) which suggested that the abnormal heme conformation exhibited a 10-fold greater affinity and association rate constant for O2 binding. Significant kinetic heterogeneity was observed only for long-chain isonitrile binding to newly reconstituted myoglobin, and even in these cases, the rate constants for the abnormal and normal heme conformations differed by less than a factor of 4.  相似文献   

9.
A kinetic description of ligand binding to sperm whale myoglobin   总被引:2,自引:0,他引:2  
Nanosecond recombination time courses were measured by photolyzing O2, NO, CO, methyl, ethyl, n-propyl, n-butyl, and tert-butyl isocyanide complexes of sperm whale myoglobin with a 30-ns laser pulse at pH 7, 20 degrees C. Absorbance was measured both during and after the excitation pulse and as a function of laser light intensity. The results were analyzed quantitatively in terms of a three-step reaction scheme, MbX in equilibrium B in equilibrium C in equilibrium Mb + X, where Mb is myoglobin, B represents a geminate state in which the ligand is present in the distal pocket but not covalently bound to the iron atom, and C, a state in which the ligand is still embedded in the protein but further away from the heme group. The fitted rate parameters were required to be consistent with the observed overall quantum yield, Q, which had been measured independently using much longer (approximately 0.5 ms) xenon flash pulses. Three major conclusions were derived from these analyses. First, the overall quantum yield of the ligand complex is determined primarily by the competition between the rate of iron-ligand bond formation from the initial photoproduct, kB----MbX, and the rate of migration away from state B, kB----C. For example, kB----C approximately equal to 30-100 microseconds-1 for all three gaseous ligands, whereas both Q and kB----MbX vary over 3 orders of magnitude (i.e. NO, Q = 0.001, kB----MbX approximately equal to 16,000 microseconds-1; O2, Q = 0.1, kB----MbX approximately equal to 500 microseconds-1; CO, Q = 1.0, kB----MbX approximately equal to 2 microseconds-1). Second, for NO, O2, and the isonitriles, the rate-limiting step in the overall association reaction starting from ligand in solution is the formation of state B. The rate constant for this process varies from 2 X 10(7) M-1 s-1 for the gaseous ligands to 0.02-1.4 X 10(5) M-1 s-1 for the isonitriles. In contrast, the B to MbX transition is limiting for CO binding. Third, for all the ligands except CO, the overall rate of dissociation is limited significantly both by the rate of thermal bond disruption, kMbX----B, and the competition between geminate recombination and migration away from the distal pocket (i.e. kB----C/(kB----MbX + kB----C]. In the case of CO, the rate of bond disruption is equal to the observed dissociation rate constant.  相似文献   

10.
We were the first to show that MbO2 deoxygenation in the cell occurs only upon interaction of myoglobin with mitochondrial membrane, which must be accompanied by changes in the heme cavity conformation of the protein and its affinity for the ligand. Under aerobic conditions, some changes in the equilibrium O2 dissociation constant (K dis) can be detected by changes of the rate of MbO2 autooxidation, i.e. spontaneous turning it into metMb (k ox), as far as a direct correlation between K dis and k ox is experimentally shown. In this work, we studied the effect on MbO2 autooxidation rate of phospholipid liposomes from neutral soybean phosphatidylcholine (lecithin) and from negatively charged 1-palmitoyl-2-oleylphosphatidylglycerol (POPG) at various phospholipid/MbO2 ratios from 25 : 1 to 100 : 1, and also the effect of rat liver mitochondria at concentration of 1 and 2 mg/ml mitochondrial protein (at 22 and 37°C). In all cases, k ox was found to increase due to interaction of the protein with phospholipid membranes. The effect of negatively charged liposomes from POPG on kox is significantly greater than that of neutral lecithin liposomes. At the POPG/MbO2 molar ratio of 25 : 1, MbO2 autooxidation rate is almost 25-fold increased compared to the control, whereas in the presence of 50-fold molar excess of lecithin, k ox is only ~10 times higher (10 mM buffer, pH 7.2, 22°C). With the same phospholipid/MbO2 ratio of 100: 1, k ox is 7 times higher for the POPG than for lecithin liposomes. In the presence of mitochondria inhibited by antimycin A, k ox grows proportionally to their concentration (about 10-fold per 1 mg/ml of mitochondrial protein), and practically does not change after adding superoxide dismutase in the reaction mixture. The k ox value decreases markedly at high ionic strength, thus suggesting an important role of coulombic electrostatics in the myoglobin-mitochondrial interaction. The increase in the autooxidation rate of MbO2 (and hence its K dis) due to the interaction with phospholipid membranes points to decreasing affinity of myoglobin for oxygen, which facilitates O2 detachment from MbO2 at physiological p 02 values.  相似文献   

11.
Specific catalytic oxidation of sperm whale oxymyoglobin by small amounts of potassium ferri- and ferrocyanide, from 1 to 20% in relation to the protein concentration, was studied. The mechanism of catalysis was shown to involve specific binding of the ferrocyanide anion to the protein. The influence of pH and ionic strength of the medium, the [Fe(CN)6]4- concentration and of chemical modification of Mb histidines by bromoacetate, as well as the effect of the Mb complexing with redox-inactive zinc ion on the rate of reaction was examined. The zinc ion forms a stable complex with His 119(GH1) on the Mb surface at the equimolar Zn2+ concentration. The kinetic scheme of the reaction was analyzed, and the equilibrium and kinetic parameters were obtained. It was first shown that the strong oxidant such as potassium ferricyanide is able to react with the same protein by two distinct mechanisms: (i) a simple outer sphere electron transfer over the heme edge and (ii) electron transfer after the specific binding of [Fe(CN)6]4- to oxyMb in the His 119(GH1) region, thus catalyzing the protein oxidation.  相似文献   

12.
P Schlecht 《Biopolymers》1969,8(6):757-765
This paper is concerned with the molecular origin of the dipole moment of sperm whale myoglobin as it can be calculated from the dielectric dispersion at 1 Mcps on the basis of a mechanism of orientational polarization. It was possible to compare the dielectric increment of native myoglobin and its change during the reaction with bromo acetate with dipole moments calculated according to the known coordinates of the charged groups of the molecule. The agreement between the two shows that in myoglobin only the permanent dipole moment due to these charged groups is important, and that contributions from other possible sources remain within the limits of experimental error.  相似文献   

13.
14.
15.
Three mutant proteins of sperm whale myoglobin (Mb) that exhibit altered axial ligations were constructed by site-directed mutagenesis of a synthetic gene for sperm whale myoglobin. Substitution of distal pocket residues, histidine E7 and valine E11, with tyrosine and glutamic acid generated His(E7)Tyr Mb and Val(E11)Glu Mb. The normal axial ligand residue, histidine F8, was also replaced with tyrosine, resulting in His(F8)Tyr Mb. These proteins are analogous in their substitutions to the naturally occurring hemoglobin M mutants (HbM). Tyrosine coordination to the ferric heme iron of His(E7)Tyr Mb and His(F8)Tyr Mb is suggested by optical absorption and EPR spectra and is verified by similarities to resonance Raman spectral bands assigned for iron-tyrosine proteins. His(E7)Tyr Mb is high-spin, six-coordinate with the ferric heme iron coordinated to the distal tyrosine and the proximal histidine, resembling Hb M Saskatoon [His(beta E7)Tyr], while the ferrous iron of this Mb mutant is high-spin, five-coordinate with ligation provided by the proximal histidine. His(F8)Tyr Mb is high-spin, five-coordinate in both the oxidized and reduced states, with the ferric heme iron liganded to the proximal tyrosine, resembling Hb M Iwate [His(alpha F8)Tyr] and Hb M Hyde Park [His(beta F8)Tyr]. Val(E11)Glu Mb is high-spin, six-coordinate with the ferric heme iron liganded to the F8 histidine. Glutamate coordination to the ferric iron of this mutant is strongly suggested by the optical and EPR spectral features, which are consistent with those observed for Hb M Milwaukee [Val(beta E11)Glu]. The ferrous iron of Val(E11)Glu Mb exhibits a five-coordinate structure with the F8 histidine-iron bond intact.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Monoclonal antibodies of high affinity (approximately 10(9) M-1) for sperm whale myoglobin were studied to pinpoint the antigenic determinants with which they interact. None of 6 different monoclonal antibodies tested reacted with any of the 3 CNBr cleavage fragments which encompass the whole sequence of myoglobin, an indication that they react with determinants present only on the native structure. To identify these sites, we compared the affinities of each antibody for a series of 14 mammalian myoglobins of known sequence and similar tertiary structure. Correlation of sequence differences with relative affinities allowed us, thus far, to identify critical antigenic residues recognized by 3 of the antibodies. Two of these antibodies recognize groups of residues which are far apart in primary structure but close together in the 3-dimensional structure of the native myoglobin molecule, i.e. topographic determinants. The third antibody distinguishes 140 Lys leads to Asn plus, probably, surface residues nearby. These determinants differ from previously reported antigenic sites on sperm whale myoglobin both in that they are topographic, rather than sequential, and in that almost all the critical residues recognized by these antibodies are outside the previously reported sites. Monoclonal antibodies are sensitive to subtle changes, e.g. Glu leads to Asp, in the antigenic site.  相似文献   

17.
The effects of pH, acetimidate concentration, temperature, and reaction time of methyl acetimidate with sperm whale myoglobulin have been assessed. Reaction at pH 9.8 and 15 degrees C for 30 min with a sixfold excess of methyl acetimidate relative to each amino group yielded six acetimidomyoglobin derivatives which were separated and purified. Reaction with tetrahydrophthalic anhydride revealed the number of amino groups that remained unreacted in each separated component and made possible further subractionation. Modification at the NH2 terminus was quantitated by automated stepwise Edman degradation. The acetimidyl and tetrahydrophthalyl groups, were readily removable. The potentiometric titration of three of the completely deprotected components showed identity with the parent untreated sperm whale myoglobin. The first of two major products was acetimidated at all 19 epsilon-amino groups but not at the NH2 terminus. The second major product bore a blocked NH2 terminus but retained one unmodified epsilon-amino group, identified after modification by trinitrobenzenesulfonate as lysine residue 77. Of the minor components, one was identified as completely acetimidated at all 20 amino groups. The other three minor components appeared to contain irreversible by-products.  相似文献   

18.
19.
In this article we use the perturbed matrix method and an extended molecular dynamics sampling of the carbon monoxide (CO) in the myoglobin distal pocket to characterize the CO vibrational spectrum and hence to relate its spectroscopic features with the atomic-molecular behavior. Results show the accuracy of the method employed and confirm the assignment of the spectroscopic B1 and B2 states proposed by Lim et al.  相似文献   

20.
We report the results of an extended molecular dynamics simulation on the migration of photodissociated carbon monoxide in wild-type sperm whale myoglobin. Our results allow following one possible ligand migration dynamics from the distal pocket to the Xe1 cavity via a path involving the other xenon binding cavities and momentarily two additional packing defects along the pathway. Comparison with recent time resolved structural data obtained by Laue crystallography with subnanosecond to millisecond resolution shows a more than satisfactory agreement. In fact, according to time resolved crystallography, CO, after photolysis, can occupy the Xe1 and Xe4 cavities. However, no information on the trajectory of the ligand from the distal pocket to the Xe1 is available. Our results clearly show one possible path within the protein. In addition, although our data refer to a single trajectory, the local dynamics of the ligand in each cavity is sufficiently equilibrated to obtain local structural and thermodynamic information not accessible to crystallography. In particular, we show that the CO motion and the protein fluctuations are strictly correlated: free energy calculations of the migration between adjacent cavities show that the migration is not a simple diffusion but is kinetically or thermodynamically driven by the collective motions of the protein; conversely, the protein fluctuations are influenced by the ligand in such a way that the opening/closure of the passage between adjacent cavities is strictly correlated to the presence of CO in its proximity. The compatibility between time resolved crystallographic experiments and molecular dynamics simulations paves the way to a deeper understanding of the role of internal dynamics and packing defects in the control of ligand binding in heme proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号