首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distinction between viable and dead cells is a major issue in many aspects of biological research. The current technologies for determining viable versus dead cells cannot readily be used for quantitative differentiation of specific cells in mixed populations. This is a serious limitation. We have solved this problem by developing a new concept with the viable/dead stain ethidium monoazide (EMA) in combination with real-time PCR (EMA-PCR). A dynamic range of approximately 4 log10 was obtained for the EMA-PCR viable/dead assay. Viable/dead differentiation is obtained by covalent binding of EMA to DNA in dead cells by photoactivation. EMA penetrates only dead cells with compromised membrane/cell wall systems. DNA covalently bound to EMA cannot be PCR amplified. Thus, only DNA from viable cells can be detected. We evaluated EMA-PCR with the major food-borne bacterium Campylobacter jejuni as an example. Traditional diagnosis of this bacterium is very difficult due to its specific growth requirements and because it may enter a state where it is viable but not cultivable. The conditions analyzed included detection in mixed and natural samples, survival in food, and survival after disinfection or antibiotic treatment. We obtained reliable viable/dead quantifications for all conditions tested. Comparison with standard fluorescence-based viable/dead techniques showed that the EMA-PCR has a broader dynamic range and enables quantification in mixed and complex samples. In conclusion, EMA-PCR offers a novel real-time PCR method for quantitative distinction between viable and dead cells with potentially very wide application.  相似文献   

2.
Aims: The detection of viable Enterobacter sakazakii cells is important due to the association of this pathogen with outbreaks of life-threatening neonatal infections. The aim of this study was to optimize a PCR-based method for selective detection of only viable Ent. sakazakii cells in the presence of dead cells, utilizing propidium monoazide (PMA) or ethidium bromide monoazide (EMA). Methods and Results: PMA or EMA was added to suspensions of viable and/or dead Ent. sakazakii cells at varying concentrations (10, 50 or 100 μg ml−1) prior to DNA isolation and PCR with Ent. sakazakii-specific primers. At concentrations of 50 and 100 μg ml−1, PMA completely inhibited PCR amplification from dead cells, while causing no significant inhibition of the amplification from viable cells. PMA was also effective in allowing selective PCR detection of only viable cells in mixtures of varying ratios of viable and dead cells. EMA was equally effective in preventing amplification from dead cells, however, it also inhibited DNA amplification from viable cells. Conclusions: This study demonstrated the efficiency of PMA for viable and dead differentiation of Ent. sakazakii, as well as the lack of selectivity of EMA for this purpose. Significance and Impact of the Study: PMA-PCR, in particular, will be useful for monitoring the resistance, survival strategies and stress responses of Ent. sakazakii in foods and the environment.  相似文献   

3.
Aims: The aim of this study was to develop and optimize a novel method that combines ethidium bromide monoazide (EMA) staining with real‐time PCR for the detection of viable Escherichia  coli O157:H7 in ground beef. EMA can penetrate dead cells and bind to intracellular DNA, preventing its amplification via PCR. Methods and Results: Samples were stained with EMA for 5 min, iced for 1 min and exposed to bright visible light for 10 min prior to DNA extraction, to allow EMA binding of the DNA from dead cells. DNA was then extracted and amplified by TaqMan® real‐time PCR to detect only viable E. coli O157:H7 cells. The primers and TaqMan® probe used in this study target the uidA gene in E. coli O157:H7. An internal amplification control (IAC), consisting of 0·25 pg of plasmid pUC19, was added in each reaction to prevent the occurrence of false‐negative results. Results showed a reproducible application of this technique to detect viable cells in both broth culture and ground beef. EMA, at a final concentration of 10 μg ml?1, was demonstrated to effectively bind DNA from 108 CFU ml?1 dead cells, and the optimized method could detect as low as 104 CFU g?1 of viable E. coli O157:H7 cells in ground beef without interference from 108 CFU g?1 of dead cells. Conclusions: EMA real‐time PCR with IAC can effectively separate dead cells from viable E. coli O157:H7 and prevent amplification of DNA in the dead cells. Significance and Impact of the Study: The EMA real‐time PCR has the potential to be a highly sensitive quantitative detection technique to assess the contamination of viable E. coli O157:H7 in ground beef and other meat or food products.  相似文献   

4.
The distinction between viable and dead cells is a major issue in many aspects of biological research. The current technologies for determining viable versus dead cells cannot readily be used for quantitative differentiation of specific cells in mixed populations. This is a serious limitation. We have solved this problem by developing a new concept with the viable/dead stain ethidium monoazide (EMA) in combination with real-time PCR (EMA-PCR). A dynamic range of approximately 4 log(10) was obtained for the EMA-PCR viable/dead assay. Viable/dead differentiation is obtained by covalent binding of EMA to DNA in dead cells by photoactivation. EMA penetrates only dead cells with compromised membrane/cell wall systems. DNA covalently bound to EMA cannot be PCR amplified. Thus, only DNA from viable cells can be detected. We evaluated EMA-PCR with the major food-borne bacterium Campylobacter jejuni as an example. Traditional diagnosis of this bacterium is very difficult due to its specific growth requirements and because it may enter a state where it is viable but not cultivable. The conditions analyzed included detection in mixed and natural samples, survival in food, and survival after disinfection or antibiotic treatment. We obtained reliable viable/dead quantifications for all conditions tested. Comparison with standard fluorescence-based viable/dead techniques showed that the EMA-PCR has a broader dynamic range and enables quantification in mixed and complex samples. In conclusion, EMA-PCR offers a novel real-time PCR method for quantitative distinction between viable and dead cells with potentially very wide application.  相似文献   

5.
Contamination of hospital water systems with legionellae is a well-known cause of nosocomial legionellosis. We describe a new real-time LightCycler PCR assay for quantitative determination of legionellae in potable water samples. Primers that amplify both a 386-bp fragment of the 16S rRNA gene from Legionella spp. and a specifically cloned fragment of the phage lambda, added to each sample as an internal inhibitor control, were used. The amplified products were detected by use of a dual-color hybridization probe assay design and quantified with external standards composed of Legionella pneumophila genomic DNA. The PCR assay had a sensitivity of 1 fg of Legionella DNA (i.e., less than one Legionella organism) per assay and detected 44 Legionella species and serogroups. Seventy-seven water samples from three hospitals were investigated by PCR and culture. The rates of detection of legionellae were 98.7% (76 of 77) by the PCR assay and 70.1% (54 of 77) by culture; PCR inhibitors were detected in one sample. The amounts of legionellae calculated from the PCR results were associated with the CFU detected by culture (r = 0.57; P < 0.001), but PCR results were mostly higher than the culture results. Since L. pneumophila is the main cause of legionellosis, we further developed a quantitative L. pneumophila-specific PCR assay targeting the macrophage infectivity potentiator (mip) gene, which codes for an immunophilin of the FK506 binding protein family. All but one of the 16S rRNA gene PCR-positive water samples were also positive in the mip gene PCR, and the results of the two PCR assays were correlated. In conclusion, the newly developed Legionella genus-specific and L. pneumophila species-specific PCR assays proved to be valuable tools for investigation of Legionella contamination in potable water systems.  相似文献   

6.
Quantitative real-time PCR may be a rapid and automated procedure for detection of bacterial pathogens from food samples. Nevertheless, when testing the effects of antimicrobials on the viability of bacterial pathogens in foods, we found that DNA from dead cells interfered greatly in the detection of viable Listeria monocytogenes after treatment with the broad-spectrum bacteriocin enterocin AS-48. To overcome this problem, a quantitative real-time PCR (qRT-PCR) assay based on bacterial mRNA was adapted to quantify viable L. monocytogenes in food after bacteriocin treatments. The procedure allowed a better and faster estimation of viable cells compared to PALCAM viable cell counts when the threshold level was 2 log units/g of food, while PALCAM viable count allowed detection of one log unit/g. This procedure may be useful to verify the efficacy of bacteriocins against L. monocytogenes in foods.  相似文献   

7.
Propidium monoazide (PMA) or ethidium bromide monoazide (EMA) treatment has been used before nucleic acid detection methods, such as PCR, to distinguish between live and dead cells using membrane integrity as viability criterion. The performance of these DNA intercalating dyes was compared in many studies utilizing different microorganisms. These studies demonstrated that EMA and PMA differ in their abilities to identify nonviable cells from mixed cell populations, depending on the microorganism and the nature of the sample. Due to this heterogeneity, both dyes were used in the present study to specifically distinguish dead from live Candida albicans cells using viable quantitative PCR (qPCR). The viable qPCR was optimized, and the best results were obtained when pre-treating the cells for 10 min in the dark with 25 μM EMA followed by continuous photoactivation for 15 min. The suitability of this technique to distinguish clotrimazole- and fluconazole-treated C. albicans cells from untreated cells was then assessed. Furthermore, the antifungal properties of two commercial essential oils (Thymus vulgaris and Matricaria chamomilla) were evaluated. The viable qPCR method was determined to be a feasible technique for assessing the viability of C. albicans after drug treatment and may help to provide a rapid diagnostic and susceptibility testing method for fungal infections, especially for patients treated with antifungal therapies.  相似文献   

8.
Because Helicobacter pylori has a role in the pathogenesis of gastric cancer, chronic gastritis and peptic ulcer disease, detection of its viable form is very important. The objective of this study was to optimize a PCR method using ethidium monoazide (EMA) or propidium monoazide (PMA) for selective detection of viable H. pylori cells in mixed samples of viable and dead bacteria. Before conducting the real-time PCR using SodB primers of H. pylori, EMA or PMA was added to suspensions of viable and/or dead H. pylori cells at concentrations between 1 and 100 μM. PMA at a concentration of 50 μM induced the highest DNA loss in dead cells with little loss of genomic DNA in viable cells. In addition, selective detection of viable cells in the mixtures of viable and dead cells at various ratios was possible with the combined use of PMA and real-time PCR. In contrast, EMA penetrated the membranes of both viable and dead cells and induced degradation of their genomic DNA. The findings of this study suggest that PMA, but not EMA, can be used effectively to differentiate viable H. pylori from its dead form.  相似文献   

9.
Detection of the lethal amphibian fungus Batrachochytrium dendrobatidis relies on PCR-based techniques. Although highly accurate and sensitive, these methods fail to distinguish between viable and dead cells. In this study a novel approach combining the DNA intercalating dye ethidium monoazide (EMA) and real-time PCR is presented that allows quantification of viable B. dendrobatidis cells without the need for culturing. The developed method is able to suppress real-time PCR signals of heat-killed B. dendrobatidis zoospores by 99.9 % and is able to discriminate viable from heat-killed B. dendrobatidis zoospores in mixed samples. Furthermore, the novel approach was applied to assess the antifungal activity of the veterinary antiseptic F10® Antiseptic Solution. This disinfectant killed B. dendrobatidis zoospores effectively within 1 min at concentrations as low as 1:6400.  相似文献   

10.
Real-time PCR is fast, sensitive, specific, and can deliver quantitative data; however, two disadvantages are that this technology is sensitive to inhibition by food and that it does not distinguish between DNA originating from viable, viable nonculturable (VNC), and dead cells. For this reason, real-time PCR has been combined with a novel discontinuous buoyant density gradient method, called flotation, in order to allow detection of only viable and VNC cells of thermotolerant campylobacters in chicken rinse samples. Studying the buoyant densities of different Campylobacter spp. showed that densities changed at different time points during growth; however, all varied between 1.065 and 1.109 g/ml. These data were then used to develop a flotation assay. Results showed that after flotation and real-time PCR, cell concentrations as low as 8.6 × 102 CFU/ml could be detected without culture enrichment and amounts as low as 2.6 × 103 CFU/ml could be quantified. Furthermore, subjecting viable cells and dead cells to flotation showed that viable cells were recovered after flotation treatment but that dead cells and/or their DNA was not detected. Also, when samples containing VNC cells mixed with dead cells were treated with flotation after storage at 4 or 20°C for 21 days, a similar percentage resembling the VNC cell fraction was detected using real-time PCR and 5-cyano-2,3-ditolyl tetrazolium chloride-4′,6′-diamidino-2-phenylindole staining (20% ± 9% and 23% ± 4%, respectively, at 4°C; 11% ± 4% and 10% ± 2%, respectively, at 20°C). This indicated that viable and VNC Campylobacter cells could be positively selected and quantified using the flotation method.  相似文献   

11.
Ethidium bromide monoazide (EMA) was utilized to selectively allow the real-time PCR (RT-PCR) amplification of a targeted DNA sequence in viable but not dead cells of Vibrio vulnificus. The optimized light exposure time to achieve cross-linking of DNA by the EMA in dead cells and to photolyse the free EMA in solution was at least 15 min. The use of 3.0 microg/ml or less of EMA did not inhibit the PCR amplification of DNA derived from viable cells of V. vulnificus. The minimum amount of EMA to completely inhibit the RT-PCR amplification of DNA derived from heat-killed cells was 2.5 microg/ml. Amplification of DNA from dead cells in a mixture with viable cells was successfully inhibited by 2.5 microg/ml of EMA, whereas the DNA from viable cells present was successfully amplified by RT-PCR.  相似文献   

12.
Legionella are prevalent in human-made water systems and cause legionellosis in humans. Conventional culturing and polymerase chain reaction (PCR) techniques are not sufficiently accurate for the quantitative analysis of live Legionella bacteria in water samples because of the presence of viable but nonculturable cells and dead cells. Here, we report a rapid detection method for viable Legionella that combines ethidium monoazide (EMA) with quantitative real-time PCR (qPCR) and apply this method to detect Legionella in a large number of water samples from different sources. Results yielded that samples treated with 5 μg/ml EMA for 10 min and subsequently exposed to light irradiation for 5 min were optimal for detecting Legionella. EMA treatment before qPCR could block the signal from approximately 4 log10 of dead cells. When investigating environmental water samples, the percent-positive rate obtained by EMA-qPCR was significantly higher than conventional PCR and culture methods, and slightly lower than qPCR. The bacterial count of Legionella determined by EMA-qPCR were mostly greater than those determined by culture assays and lower than those determined by qPCR. Acceptable correlations were found between the EMA-qPCR and qPCR results for cooling towers, piped water and hot spring water samples (r = 0.849, P < 0.001) and also found between the EMA-qPCR and culture results for hot spring water samples (r = 0.698, P < 0.001). The results indicate that EMA-qPCR could be used as a complementary tool for the detection and monitoring of Legionella in water systems, especially in hot spring water samples.  相似文献   

13.
Aims: To optimize ethidium monoazide (EMA) coupled with real‐time quantitative PCR (qPCR) and to evaluate its environmental applicability on quantifying viable legionellae in water and biofilm of cooling towers and hot water systems. Methods and Results: EMA (0·9–45·5 μg ml?1) and propidium monoazide (PMA, 0·9 and 2·3 μg ml?1) combined with qPCR (i.e. EMA‐qPCR and PMA‐qPCR, respectively) were applied to unheated and heated (70°C for 30 min) Legionella pneumophila to quantify viable cells, which was also simultaneously determined by BacLight Bacterial Viability kit with epifluorogenic microscopic enumeration (BacLight‐EM). The effects of nontarget microflora and sample matrix on the performance of EMA‐qPCR were also evaluated. In comparison with BacLight‐EM results, qPCR with EMA at 2·3 μg ml?1 was determined as the optimal EMA‐qPCR assay, which performed equally well as PMA‐qPCR for unheated Leg. pneumophila but better than PMA‐qPCR for heated Leg. pneumophila (P < 0·05). Moreover, qPCR with EMA at 2·3 μg ml?1 accurately quantified viable Leg. pneumophila, Legionella anisa and Legionella‐like amoebal pathogens 6 (LLAP 6) without interferences by heated legionellae, unheated nonlegionellae cells and cooling tower water matrix (P > 0·05). As for water and biofilm samples collected from cooling towers and hot water systems, the viable legionellae counts determined by EMA‐qPCR were mostly greater than the culturable counts by culture assay but consistently lower than the total cell counts quantified by qPCR. Conclusions: The qPCR with EMA at 2·3 μg ml?1 may accurately quantify viable legionellae (including fastidious LLAP 6) and Leg. pneumophila pretreated with superheating and is applicable for water and biofilm samples obtained from cooling towers and hot water systems. Significance and Impact of the Study: The EMA‐qPCR assay may be useful in environmental surveillance for viable legionellae and in evaluation of superheating efficacy against legionellae.  相似文献   

14.
Pasteurized milk is a complex food that contains various inhibitors of polymerase chain reaction (PCR) and may contain a large number of dead bacteria, depending on the milking conditions and environment. Ethidium monoazide bromide (EMA)-PCR is occasionally used to distinguish between viable and dead bacteria in foods other than pasteurized milk. EMA is a DNA-intercalating dye that selectively permeates the compromised cell membranes of dead bacteria and cleaves DNA. Usually, EMA-PCR techniques reduce the detection of dead bacteria by up to 3.5 logs compared with techniques that do not use EMA. However, this difference may still be insufficient to suppress the amplification of DNA from dead Gram-negative bacteria (e.g., total coliform bacteria) if they are present in pasteurized milk in large numbers. Thus, false positives may result. We developed a new method that uses real-time PCR targeting of a long DNA template (16S-23S rRNA gene, principally 2,451?bp) following EMA treatment to completely suppress the amplification of DNA of up to 7?logs (10(7)?cells) of dead total coliforms. Furthermore, we found that a low dose of proteinase K (25?U/ml) removed PCR inhibitors and simultaneously increased the signal from viable coliform bacteria. In conclusion, our simple protocol specifically detects viable total coliforms in pasteurized milk at an initial count of ≥1?colony forming unit (CFU)/2.22?ml within 7.5?h of total testing time. This detection limit for viable cells complies with the requirements for the analysis of total coliforms in pasteurized milk set by the Japanese Sanitation Act (which specifies <1?CFU/2.22?ml).  相似文献   

15.
One of the greatest challenges of implementing fast molecular detection methods as part of Legionella surveillance systems is to limit detection to live cells. In this work, a protocol for sample treatment with propidium monoazide (PMA) in combination with quantitative PCR (qPCR) has been optimized and validated for L. pneumophila as an alternative of the currently used time-consuming culture method. Results from PMA-qPCR were compared with culture isolation and traditional qPCR. Under the conditions used, sample treatment with 50 μM PMA followed by 5 min of light exposure were assumed optimal resulting in an average reduction of 4.45 log units of the qPCR signal from heat-killed cells. When applied to environmental samples (including water from cooling water towers, hospitals, spas, hot water systems in hotels, and tap water), different degrees of correlations between the three methods were obtained which might be explained by different matrix properties, but also varying degrees of non-culturable cells. It was furthermore shown that PMA displayed substantially lower cytotoxicity with Legionella than the alternative dye ethidium monoazide (EMA) when exposing live cells to the dye followed by plate counting. This result confirmed the findings with other species that PMA is less membrane-permeant and more selective for the intact cells. In conclusion, PMA-qPCR is a promising technique for limiting detection to intact cells and makes Legionella surveillance data substantially more relevant in comparison with qPCR alone. For future research it would be desirable to increase the method's capacity to exclude signals from dead cells in difficult matrices or samples containing high numbers of dead cells.  相似文献   

16.
AIMS: Surface contamination by Listeria monocytogenes of gouda-like cheeses during processing represents a potential public health problem. The aim of this work was to develop novel real-time PCR diagnostics to detect the presence of viable, dead or viable but not culturable (VBNC) cells on gouda-like cheeses. METHODS AND RESULTS: We used ethidium monoazide bromide (EMA)-PCR for direct quantification of viable and dead cells, while semiquantitative detection of culturable cells below the PCR detection limit (c. 100 CFU g(-1)) was obtained by combining growth and real-time PCR. We were able to quantify the fraction of >0.5% viable cells in a background of dead cells by EMA-PCR, given that the viable cell concentration was above the PCR detection limit. The combined growth and real-time PCR complemented the EMA-PCR, and enabled semiquantitative detection of low levels of culturable cells (10 and 100 CFU g(-1)). SIGNIFICANCE AND IMPACT OF THE STUDY: The significance of this work is that we have developed a novel concept for detection of viable and potentially infectious L. monocytogenes.  相似文献   

17.
PCR-based methods have been developed to rapidly screen for Legionella pneumophila in water as an alternative to time-consuming culture techniques. However, these methods fail to discriminate between live and dead bacteria. Here, we report a viability assay (viability PCR [v-PCR]) for L. pneumophila that combines ethidium monoazide bromide with quantitative real-time PCR (qPCR). The ability of v-PCR to differentiate viable from nonviable L. pneumophila cells was confirmed with permeabilizing agents, toluene, or isopropanol. v-PCR suppressed more than 99.9% of the L. pneumophila PCR signal in nonviable cultures and was able to discriminate viable cells in mixed samples. A wide range of physiological states, from culturable to dead cells, was observed with 64 domestic hot-water samples after simultaneous quantification of L. pneumophila cells by v-PCR, conventional qPCR, and culture methods. v-PCR counts were equal to or higher than those obtained by culture and lower than or equal to conventional qPCR counts. v-PCR was used to successfully monitor in vitro the disinfection efficacy of heating to 70°C and glutaraldehyde and chlorine curative treatments. The v-PCR method appears to be a promising and rapid technique for enumerating L. pneumophila bacteria in water and, in comparison with conventional qPCR techniques used to monitor Legionella, has the advantage of selectively amplifying only viable cells.Legionella organisms are ubiquitous bacteria found in many types of water sources in the environment. Their growth is especially favored in human-made warm water systems, including cooling towers, hot tubs, showerheads, and spas (3, 14, 15, 38). Legionella bacteria replicate as intracellular parasites of amoebae and persist in the environment as free-living microbes or in biofilms. In aerosol form, they enter the lungs and can cause an acute form of pneumonia known as Legionnaires'' disease or a milder form of pulmonary infection called Pontiac fever. The species Legionella pneumophila is responsible for the vast majority of the most severe form of this atypical pneumonia (52, 70). Legionellosis outbreaks are associated with high mortality rates (15 to 20%) (15, 16, 38, 46), which can reach up to 50% for people with weakened immune systems (immunocompromised patients) (69). Legionella surveillance programs include regular monitoring of environmental water samples (9, 13, 66). It is generally acknowledged that Legionella represents a health risk to humans when cell densities are greater than 104 to 105 CFU per liter of water, and epidemiological data show that outbreaks of legionellosis occur at these concentrations (36, 47).The evaluation of the risk associated with Legionella has traditionally been performed using culture-based methods (1, 24). Culture is essential for identifying and typing Legionella strains during epidemics. However, Legionella culture requires long incubation times (up to 10 days) before results can be scored. This problem makes culture unsuitable for preventive actions and rapid response in emergency situations. Moreover, under certain conditions (i.e., low-nutrient environments, oxidative or osmotic stress, etc.), Legionella cells can lose the ability to be cultured, although they are still viable (7, 17, 20, 22, 39, 45, 67). These viable but nonculturable (VBNC) Legionella cells may still represent a public health hazard because they can regain their ability to grow in new, more favorable conditions (12, 19, 23, 61).Molecular approaches, such as quantitative real-time PCR (qPCR), are faster and can mitigate the main drawbacks of culture-based methods. qPCR is an alternative tool that offers rapid, sensitive, and specific detection of Legionella bacteria in environmental water samples (4, 5, 12, 26, 65, 68). PCR results can be obtained in hours instead of days, and VBNC Legionella cells can also be detected (12, 26). However, the major disadvantage of qPCR lies in its inability to evaluate viability due to the persistence of DNA in cells after death (27, 34). The monitoring of Legionella contamination levels by conventional qPCR may thus result in an overestimation of the risk of infection because false-positive results can be scored. However, the real risk from Legionella is limited to the live fraction of the total Legionella population. Only live or viable Legionella cells are able to replicate in pulmonary macrophages and cause severe pneumonia (14, 15). The development of more rapid, culture-independent methods capable of discriminating between live and dead cells is of major interest for measuring Legionella infection risks and preventing legionellosis. The nucleic acid-binding dye ethidium monoazide bromide (EMA), used in combination with qPCR, is an attractive alternative for selectively detecting and enumerating viable bacteria. EMA is particularly useful because it selectively penetrates cells with damaged membranes and covalently binds to DNA after photoactivation (21, 53). DNA-bound EMA molecules prevent PCR amplification and thereby lead to a strong signal reduction during qPCR. DNA from viable cells with intact cell membranes prevents EMA molecules from entering the cell and therefore can be amplified and quantified (56). Nocker et al. (41, 42) suggested that the signal reduction was due to a selective loss of genomic DNA from dead cells (rendered insoluble after cross-linkage) during the DNA extraction procedure rather than to PCR inhibition. However, Soejima et al. (59, 60) recently reported that treatment with EMA followed by visible light irradiation directly cleaves the chromosomal DNA of dead bacteria.In this study we optimized the EMA-staining procedure in conjunction with qPCR with pure cultures of L. pneumophila. We analyzed the potential for the EMA-qPCR method to discriminate Legionella cells with compromised or intact cell membranes. We optimized this EMA-qPCR technique, viability PCR, hereafter named v-PCR, and used it to quantify viable Legionella cells in environmental water samples. We compared our results with those obtained by conventional qPCR and culture methods. In addition, we evaluated the ability of v-PCR to monitor the efficacy of different disinfection strategies.  相似文献   

18.
Aims:  The DNA-intercalating dye ethidium bromide monoazide (EMA) has recently been used as a DNA binding agent to differentiate viable and dead bacterial cells by selectively penetrating through the damaged membrane of dead cells and blocking the DNA amplification during the polymerase chain reaction (PCR). We optimized and tested the assay in vitro using Staphylococcus aureus and Staphylococcus epidermidis cultures to distinguish viable from dead bacteria, with the goal of reducing false positive PCR results.
Methods and Results:  Viable and heat-inactivated bacteria were treated with EMA or left untreated before DNA extraction. A real-time PCR assay for the detection of the tuf gene in each DNA extract was used. Our results indicated that EMA influenced viable bacteria as well as dead bacteria, and the effect of EMA depended on the EMA concentration and bacterial number.
Conclusions:  EMA is not a suitable indicator of bacterial viability, at least with respect to Staphylococcus species.
Significance and Impact of the Study:  Determining the viability of pathogens has a major impact on interpreting the results of molecular tests for bacteria and subsequent clinical management of patients. To this end, several methods are being evaluated. One of these methods – intercalating DNA of dead bacteria by EMA – looked very promising, but our study found it unsatisfactory for S. aureus and coagulase-negative Staphylococci.  相似文献   

19.
The effect of refrigerated and frozen storage on the viability of Vibrio vulnificus was evaluated using cell suspensions (1 × 108 CFU/ml). Ethidium bromide monoazide (EMA) was utilized to selectively allow real-time (Rti) PCR amplification of target DNA from viable but not dead cells. Bacterial survivors from the EMA Rti-PCR were evaluated by comparison with the plate count assay following different temperature exposures (− 20 and 4 °C) every 24 h for 72 h. The log CFU values from the EMA Rti-PCR assays were erroneously higher than that from plate counts. DNA amplification was not completely suppressed by EMA treatment of low temperature destroyed cells suggesting that membrane damage was not sufficient to allow effective EMA penetration into the cells. The optimal concentration of sodium deoxycholate (SD) was also determined to enhance discrimination of viable and dead cells following exposure of cells to low temperatures. The use of 0.01% or less of SD did not inhibit the Rti-PCR amplification derived from viable bacterial cells. A rapid decrease of the log CFU was observed with cell suspensions subjected to frozen storage and a slow decline in the log CFU occurred at 4 °C. The combination of SD and EMA treatments applied to cells of V. vulnificus held at − 20 °C and 4 °C resulted in a high level of correlation between the log of CFU (plate counts) and the log of the number of viable cells determined from SD+EMA Rti-PCR.  相似文献   

20.
Nogva HK  Drømtorp SM  Nissen H  Rudi K 《BioTechniques》2003,34(4):804-8, 810, 812-3
PCR techniques have significantly improved the detection and identification of bacterial pathogens. Even so, the lack of differentiation between DNA from viable and dead cells is one of the major challenges for diagnostic DNA-based methods. Certain nucleic acid-binding dyes can selectively enter dead bacteria and subsequently be covalently linked to DNA. Ethidium monoazide (EMA) is a DNA intercalating dye that enters bacteria with damaged membranes. This dye can be covalently linked to DNA by photoactivation. Our goal was to utilize the irreversible binding of photoactivated EMA to DNA to inhibit the PCR of DNA from dead bacteria. Quantitative 5'-nuclease PCR assays were used to measure the effect of EMA. The conclusion from the experiments was that EMA covalently bound to DNA inhibited the 5'-nuclease PCR. The maximum inhibition of PCR on pure DNA cross-linked with EMA gave a signal reduction of approximately -4.5 log units relative to untreated DNA. The viable/dead differentiation with the EMA method was evaluated through comparison with BacLight staining (microscopic examination) and plate counts. The EMA and BacLight methods gave corresponding results for all bacteria and conditions tested. Furthermore, we obtained a high correlation between plate counts and the EMA results for bacteria killed with ethanol, benzalkonium chloride (disinfectant), or exposure to 70 degrees C. However, for bacteria exposed to 100 degrees C, the number of viable cells recovered by plating was lower than the detection limit with the EMA method. In conclusion, the EMA method is promising for DNA-based differentiation between viable and dead bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号