首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
The properties of the two monoclonal antibodies which were found to inhibit cyclic AMP receptor protein (CRP)-stimulated abortive initiation without affecting cAMP binding (Li, X.-M., and Krakow, J. S. (1986) J. Biol. Chem. 260, 4378-4383) have been characterized. Binding of monoclonal antibody (mAb) 66C3 to CRP is stimulated by cAMP while CRP binding by mAb 63B2 is not affected by cAMP. Binding of cAMP-CRP-mAb 63B2 to the lac P+ DNA is completely inhibited. Whereas cAMP-CRP forms a stable complex only at the CRP site 1 of the lac P+ promoter fragment, cAMP-CRP-mAb 66C3 binds to both site 1 and site 2. DNase I footprinting using a HpaII fragment carrying only the lac site 2 does not show any protection by cAMP-CRP-mAb 66C3. With the lac L8UV5 promoter, binding is not seen at either the L8 site 1 or the unaltered site 2. In the presence of 25% glycerol, cAMP-CRP-mAb 66C3 binds to both L8 site 1 and site 2. RNA polymerase is unable to bind to the cAMP-CRP-mAb 66C3-lac P+ complex. In the presence of RNA polymerase, cAMP-CRP forms a stable complex at the L8 site 1, the subsequent addition of mAb 66C3 results in the release of CRP. The CRP present in the lac P+ open promoter complex is partially resistant to subsequent incubation with mAb 66C3. The results provide further evidence regarding possible contacts between CRP and RNA polymerase involved in establishing the open promoter complex.  相似文献   

3.
4.
J Lee  A Goldfarb 《Cell》1991,66(4):793-798
RNA polymerase engaged in the joint complex with the lac repressor at the lac UV5 promoter cannot escape into elongation but generates abortive RNA oligomers. The joint complex actively transcribes a few initial base pairs in a reaction unusually sensitive to a decrease in the substrate concentration. The joint complex, however, fails to traverse a point in the initial transcribed sequence that normally requires a high concentration of the elongating substrate. Thus, the repressor acts by augmenting a natural high "kNTP" site (pause site) embedded in the promoter. A lethal RNA polymerase mutation that mimics the effect of the repressor leads to an analogous block of promoter clearance and shortened abortive product pattern on several promoters, reflecting the widespread occurrence of high kNTP sites in promoters.  相似文献   

5.
6.
7.
8.
9.
10.
11.
The rates of formation of RNA polymerase-promoter open complexes at the galactose P2 and lactose UV5 promoters of E. coli were studied using polyacrylamide gels to separate the heparin-resistant complexes from unbound DNA. Both the apparent rate and extent of reaction at these promoters are inhibited at excess RNA polymerase. This inhibition, which can be relieved by the addition of non-promoter DNA, is interpreted to be the result of occlusion of the promoter site by nonspecifically bound polymerase. Additionally, biphasic kinetics are observed at both gal P2 and lac UV5, but not at the PR promoter of phage lambda. This behavior disappears when the concentration of RNA polymerase in the binding reaction is less than that of the promoter fragment. It is proposed that at excess enzyme nonspecifically bound polymerase molecules sliding along the DNA may "bump" closed complexes from the promoter site thereby reducing the rate of open complex formation. Kinetics mechanisms quantifying both the occlusion and bumping phenomena are presented.  相似文献   

12.
13.
During infection of Escherichia coli by bacteriophage T7, E. coli RNA polymerase utilizes only three promoters (A1, A2, and A3). In vitro, the A promoters predominate at very low polymerase concentration, but at higher polymerase concentration the minor B, C, D, and E promoters are used with equal efficiency. The binding constant for the initial association of polymerase with promoters and the forward rate of isomerization to an "open" complex capable of initiation have been measured for the A1, A3, C, and D promoters using the abortive initiation reaction. At 80 mM KCl, 37 degrees C, both major and minor promoters isomerize rapidly (t1/2 = 10 to 30 s). In contrast, initial binding to the minor promoters (KI = 10(7) ) is at least 10-fold weaker than binding to major promoters KI greater than or equal to 10(8) ), suggesting promoter selectivity in the T7 system occurs at the point of initial binding. Association kinetics of the A1 and C promoters on intact T7 were the same as measured on restriction fragments of length greater than or equal to 500 base pairs. All open complexes dissociated with half-lives longer than 1 h. Overall equilibrium binding constants estimated from kinetic measurements ranged from 10(10) to greater than or equal to 10(11) M-1 for minor and major promoters, respectively. Data on heparin attack and abortive initiation turnover rates indicate open complex polymerase conformation may be different at the A1 and A3 promoters.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号