首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the maturation in vitro of reconstituted collagen fibrils prepared from rat skin, the mechanical and thermal stability of collagen increased and the pepsin-solubility decreased. At the same time a larger fraction of the pepsin-soluble collagen attained a lower molecular thermal stability that resulted in a biphasic thermal transition of the soluble collagen. Type-I collagen, with a similar biphasic thermal transition, was isolated from acid-insoluble rat skin collagen.  相似文献   

2.
The effects of three glycosaminoglycans (chondroitin 6-sulfate, dermatan sulfate, and hyaluronate) and a proteoglycan on the kinetics of fibril formation and on the thermal stability of the in vitro assembled collagen fibrils, under physiological conditions of ionic strength and pH, have been examined. The glycosaminoglycans were found to influence the kinetics of collagen precipitation but not the thermal stability of the in vitro assembled fibrils. The proteoglycan was found to influence the kinetics of collagen precipitation and to reduce the thermal stability of the in vitro assembled fibrils. Comparison of the interaction occurring between chondroitin 6-sulfate and collagen under acidic conditions (0.05M acetic acid) and that occurring under physiological conditions showed that markedly different interaction products were formed under the different conditions.  相似文献   

3.
The assembly of collagen fibrils as a function of temperature and collagen concentration was studied. It was shown that temperature increases from 25 to 35 degrees C, the degree of ordering of collagen fibrils increases 1.5-fold at collagen concentration above 1 mg/ml and 2-fold at low collagen concentration. A maximum ordering of fibril structure occurs under conditions close to physiological (T approximately 35 degrees C and collagen concentration 1.2 mg/ml). As temperature is elevated from 30 to 35 degrees C, the packing of collagen molecules in fibrils becomes more ordered: the values of enthalpy and entropy of the transition of fibrils from the native to a disordered state decrease at all collagen concentrations used. At high collagen concentration, the dimensions of cooperative blocks in fibrils formed at 25 and 30 degrees C coincide with those of cooperative blocks of monomeric collagen in solution. Upon increasing the temperature to 35 degrees C, the dimensions of cooperative blocks increase.  相似文献   

4.
The roles of pH and ionic strength on the structure and stability of collagen fibrils have been investigated by means of x-ray and neutron diffraction techniques. High-angle x-ray diffraction shows that a salt concentration of 0.5M KCl is sufficient to reduce the osmotic swelling and related disordering in the pH range 1–3. The relative intensities of the low-angle meridional x-ray and neutron diffraction Bragg reflections vary with pH. Difference Fourier syntheses between pH 7 and 1.6 data indicate, for both x-ray and neutron diffraction, a reduced scattering contribution from the telopeptides at low pH. Lyotropic relaxation is a crucial step in the appearance at low pH of a doubling of the 668-Å axial periodicity (D) of collagen fibrils. These results suggest that electrostatic interactions are essential for the structural stability of the telopeptide regions and of the 1D and 3D intermolecular staggers between collagen molecules.  相似文献   

5.
Previous observations suggested that pNcollagen III, the partially processed form of type III procollagen, coats fibrils of collagen I and thereby helps regulate the diameter of fibrils formed by collagen I. The previous observations, however, did not exclude the possibility that pNcollagen III was deposited on preformed collagen I fibrils after the fibrils were assembled. Here, mixtures of pNcollagen III and collagen I were generated simultaneously by enzymatic cleavage of precursor forms of the proteins. The results demonstrated that pNcollagen III forms true copolymers with collagen I. The presence of pNcollagen III both inhibited the rate at which collagen I assembled into fibrils and decreased the amount of collagen I incorporated into fibrils at steady-state equilibrium. In addition, the results demonstrated that copolymerization of pNcollagen III with collagen I generated fibrils that were thinner than fibrils generated under the same conditions from collagen I alone. Increasing the initial molar ratio of pNcollagen III to collagen I in the solution-phase increased the amount of pNcollagen III copolymerizing with collagen I and progressively decreased the diameter of the fibrils. Therefore, the copolymers were heterogeneous in that the stoichiometry of the two monomers in the fibrils varied. The results are consistent with a model in which pNcollagen III can regulate the diameter of collagen I fibrils by coating the surface of the fibrils and thereby allow tip growth but not lateral growth of the fibrils.  相似文献   

6.
Analysis of the results of calorimetric study of reconstituted collagen (type I) fibrils, in particular, the half-width of the temperature transition, shows that the collagen packing density in the fibrils and the size of cooperative blocks therein depend on the assembly temperature and on the initial collagen concentration. The least dense fibrils are formed at subphysiological temperatures (25° or 30°C) and low concentration (0.3 mg/ml). The extent of ordering does not change upon doubling the concentration but increases upon quadrupling it. At physiological temperature (35°C) the fibrils are densely packed regardless of collagen concentration. The enthalpy of fibril assembly is minimal at 35°C, 1.2 mg/ml, and ionic strength of 0.17 M. The influence of temperature on particular steps of fibrillogenesis and the role of water in these processes are discussed.  相似文献   

7.
Diameters of collagen fibrils grown in vitro   总被引:1,自引:0,他引:1  
  相似文献   

8.
9.
10.
Semicarbazide affected both the final width and stability of fibrils reconstituted from solutions of acid-soluble collagen. Fibril width was increased after semicarbazide treatment at pH2.6 and 4.3, whereas after treatment at pH8.9 it decreased. Fibril stability was decreased after semicarbazide treatment at all values of pH and temperature, indicating the inhibition of intermolecular cross-linking. A direct binding of semicarbazide to the alphabeta-unsaturated aldehyde groups in the intramolecular cross-link was demonstrated.  相似文献   

11.
During bone and dentin mineralization, the crystal nucleation and growth processes are considered to be matrix regulated. Osteoblasts and odontoblasts synthesize a polymeric collagenous matrix, which forms a template for apatite initiation and elongation. Coordinated and controlled reaction between type I collagen and bone/dentin-specific noncollagenous proteins are necessary for well defined biogenic crystal formation. However, the process by which collagen surfaces become mineralized is not understood. Dentin matrix protein 1 (DMP1) is an acidic noncollagenous protein expressed during the initial stages of mineralized matrix formation in bone and dentin. Here we show that DMP1 bound specifically to type I collagen, with the binding region located at the N-telopeptide region of type I collagen. Peptide mapping identified two acidic clusters in DMP1 responsible for interacting with type I collagen. The collagen binding property of these domains was further confirmed by site-directed mutagenesis. Transmission electron microscopy analyses have localized DMP1 in the gap region of the collagen fibrils. Fibrillogenesis assays further demonstrated that DMP1 accelerated the assembly of the collagen fibrils in vitro and also increased the diameter of the reconstituted collagen fibrils. In vitro mineralization studies in the presence of calcium and phosphate ions demonstrated apatite deposition only at the collagen-bound DMP1 sites. Thus specific binding of DMP1 and possibly other noncollagenous proteins on the collagen fibril might be a key step in collagen matrix organization and mineralization.  相似文献   

12.
K H Knese 《Acta anatomica》1978,100(3):328-346
We studied the modifications of collagen fibrils during the histogenesis of the intervertebral disc of cats. In connexion with these studies it is necessary to distinguish between the fibrillar (functional) structure, the arrangement of fibrils, and the nature of fibrils, their diameter, period and other properties. Collagen fibrils (40--50 nm) of the anulus fibrosus enter in hyaline cartilage and split off in thin fibrils (8--10 nm). In this area the cartilage fibrils have a diameter of 20--22 nm, in a greater distance the diameter is diminished to 7--8 nm. Analogous to the changing of the nature of fibrils, the number of the cells related to the sectional area is diminished. The cells of the anulus fibrosus resemble those of tendons. In the transition area their shape becomes roundish, the number of granular membranes is increased, a voluminous Golgi-Apparatus appears for a short time. Finally, the cells are once transformed in cartilage cells with a small reticulum or cells of fibrocartilage with a capsule and a decreased cytoplasm; some cells are disintegrated. In the capsule of the fibrocartilage cells, parallel orientated filaments exhibit a periodical arrangement. In the border of the capsule, filaments change into periodical fibrils. Therefore, we must regard cells and their surrounding intercellular substance as metabolic unity which in the cartilage may be characterized as the chondron.  相似文献   

13.
The diameter of collagen fibrils was measured in different regions of the antimesometrial endometrium of mice on days 5, 6, and 7 of pregnancy as well as in the endometrium of virgin mice. The average diameter of fibrils of virgin mice was 39.18 nm (range: 20-80). In the region of fully decidualized cells, the averages and ranges were 45.32 nm (30-170), 89.39 nm (30-270), and 125.88 nm (20-370), respectively, on days 5, 6, and 7 of pregnancy. Thick fibrils larger than 70 nm had irregular profiles. Our results show that the increase in diameter is associated with the decidualization of the mouse endometrium.  相似文献   

14.
《The Journal of cell biology》1994,125(5):1179-1188
The glycosaminoglycan chains of cell surface heparan sulfate proteoglycans are believed to regulate cell adhesion, proliferation, and extracellular matrix assembly, through their interactions with heparin-binding proteins (for review see Ruoslahti, E. 1988. Annu. Rev. Cell Biol. 4:229-255; and Bernfield, M., R. Kokenyesi, M. Kato, M. T. Hinkes, J. Spring, R. L. Gallo, and E. J. Lose. 1992. Annu. Rev. Cell Biol. 8:365-393). Heparin-binding sites on many extracellular matrix proteins have been described; however, the heparin-binding site on type I collagen, a ubiquitous heparin-binding protein of the extracellular matrix, remains undescribed. Here we used heparin, a structural and functional analogue of heparan sulfate, as a probe to study the nature of the heparan sulfate proteoglycan-binding site on type I collagen. We used affinity coelectrophoresis to study the binding of heparin to various forms of type I collagen, and electron microscopy to visualize the site(s) of interaction of heparin with type I collagen monomers and fibrils. Using affinity coelectrophoresis it was found that heparin has similar affinities for both procollagen and collagen fibrils (Kd's approximately 60-80 nM), suggesting that functionally similar heparin- binding sites exist in type I collagen independent of its aggregation state. Complexes of heparin-albumin-gold particles and procollagen were visualized by rotary shadowing and electron microscopy, and a preferred site of heparin binding was observed near the NH2 terminus of procollagen. Native or reconstituted type I collagen fibrils showed one region of significant heparin-gold binding within each 67-nm period, present near the division between the overlap and gap zones, within the "a" bands region. According to an accepted model of collagen fibril structure, our data are consistent with the presence of a single preferred heparin-binding site near the NH2 terminus of the collagen monomer. Correlating these data with known type I collagen sequences, we suggest that the heparin-binding site in type I collagen may consist of a highly basic triple helical domain, including several amino acids known sometimes to function as disaccharide acceptor sites. We propose that the heparin-binding site of type I collagen may play a key role in cell adhesion and migration within connective tissues, or in the cell- directed assembly or restructuring of the collagenous extracellular matrix.  相似文献   

15.
16.
Normal type I collagen is a heterotrimer of two α1(I) and one α2(I) chains, but various genetic and environmental factors result in synthesis of homotrimers that consist of three α1(I) chains. The homotrimers completely replace the heterotrimers only in rare recessive disorders. In the general population, they may compose just a small fraction of type I collagen. Nevertheless, they may play a significant role in pathology; for example, synthesis of 10-15% homotrimers due to a polymorphism in the α1(I) gene may contribute to osteoporosis. Homotrimer triple helices have different stability and less efficient fibrillogenesis than heterotrimers. Their fibrils have different mechanical properties. However, very little is known about their molecular interactions and fibrillogenesis in mixtures with normal heterotrimers. Here we studied the kinetics and thermodynamics of fibril formation in such mixtures by combining traditional approaches with 3D confocal imaging of fibrils, in which homo- and heterotrimers were labeled with different fluorescent colors. In a mixture, following a temperature jump from 4 to 32 °C, we observed a rapid increase in turbidity most likely caused by formation of homotrimer aggregates. The aggregates promoted nucleation of homotrimer fibrils that served as seeds for mixed and heterotrimer fibrils. The separation of colors in confocal images indicated segregation of homo- and heterotrimers at a subfibrillar level throughout the process. The fibril color patterns continued to change slowly after the fibrillogenesis appeared to be complete, due to dissociation and reassociation of the pepsin-treated homo- and heterotrimers, but this remixing did not significantly reduce the segregation even after several days. Independent homo- and heterotrimer solubility measurements in mixtures confirmed that the subfibrillar segregation was an equilibrium property of intermolecular interactions and not just a kinetic phenomenon. We argue that the subfibrillar segregation may exacerbate effects of a small fraction of α1(I) homotrimers on formation, properties, and remodeling of collagen fibers.  相似文献   

17.
18.
Measurements of the solubility of calf-skin tropocollagen in neutral phosphate buffers in the temperature range 20-37 degrees C show that native collagen fibril formation is an endothermic process made thermodynamically favourable by a large positive entropy of precipitation associated with structural changes in the surrounding solvent. The effect of inorganic ions and small solute molecules on precipitation seems to be correlated with their structural effects on liquid water. Heterogeneity in the precipitation properties of the collagen solutions may be related to changes in the configurational entropy of the macromolecules due to intramolecular cross-linking.  相似文献   

19.
20.
1. The pH dependencies of the apparent Michaelis constant for oxidized glutathione and the apparent turnover number of yeast glutathione reductase (EC 1.6.4.2) have been determined at a fixed concentration of 0.1 mM NADPH in the range pH 4.5--8.0. Between pH 5.5 and 7.6, both of these parameters are relatively constant. The principal effect of low pH on the kinetics of the enzyme-catalyzed reaction is the observation of a pH-dependent substrate inhibition by oxidized glutathione at pH less than or equal 7, which is shown to correlate with the binding of oxidized glutathione to the oxidized form of the enzyme. 2. The catalytic activity of yeast glutathione reductase at pH 5.5 is affected by the sodium acetate buffer concentration. The stability of the oxidized and reduced forms of the enzyme at pH 5.5 and 25 degrees C in the absence of bovine serum albumin was studied as a function of sodium acetate concentration. The results show that activation of the catalytic activity of the enzyme at low sodium acetate concentration correlates with an effect of sodium acetate on a reduced form of the enzyme. In contrast, inhibition of the catalytic activity of the enzyme at high sodium acetate concentration correlates with an effect of sodium acetate on the oxidized form of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号