首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report includes results demonstrating the existence of orotidine-5'-phosphate decarboxylase and orotidine-5'-phosphate pyrophosphorylase in plant leaves. The decarboxylase enzyme, purified 8 fold from leaves of etiolated pinto beans (Phaseolus vulgaris L.), had a pH optimum of 6.3. It was strongly inhibited by 6-azauridine-5'-phosphate; a concentration of 12 mum decreased the reaction rate 60%. The enzyme was not dependent upon magnesium ions or inhibited by p-chloromercuribenzoate. It was present in other parts of the bean plant and was found in young leaves of tomato (Lycopersicon esculentum Mill.) and Canada thistle (Cirsium arvense L.)The enzyme orotidine-5'-phosphate pyrophosphorylase, which catalyzes the formation of orotidine-5'-phosphate from orotic acid and 5-phosphoribosyl-1-pyrophosphate, was found in the etiolated bean leaves, and was also present in the leaves of tomato and Canada thistle. It was stimulated by manganous or magnesium ions and had a pH optimum of 7.2. The K(m) value obtained by varying the concentrations of 5-phosphoribosyl-1-pyrophosphate was 75 mum, and when orotic acid was varied the resulting K(m) was 3.5 mum.The presence of these 2 enzymes in higher plants, combined with previous results with inhibitors and labeled metabolites, indicates that the normal pathway of pyrimidine nucleotide synthesis in higher plants proceeds through orotic acid and OMP.  相似文献   

2.
Li C  Rodriguez M  Banerjee D 《Gene》2000,254(1-2):97-103
Endomyces fibuliger is a yeast used in the production of Chinese rice wine. It secretes enzymes such as glucoamylase, alpha-amylase and acid protease. Very little is known of the genetics of E. fibuliger. In order to develop a transformation system for this yeast, orotidine-5'-phosphate decarboxylase mutant strains were obtained and characterized. Transformation of the E. fibuliger ura3 mutant F1 with an integrative plasmid that carried the wild-type URA3 gene of E. fibuliger gave complementation of this mutation. The E. fibuliger gene encodes the orotidine-5'-phosphate decarboxylase enzyme consisting of 266 amino acid residues with a 69.4% sequence identity with orotidine-5'-phosphate decarboxylase of Saccharomyces cerevisiae. Our finding that E. fibuliger URA3 complements the ura3 mutation in S. cerevisiae confirms that the URA3 gene of E. fibuliger encodes a protein that exerts a similar function.  相似文献   

3.
We have prepared an affinity column for the purification of orotidine-5'-phosphate decarboxylase from yeast. The column effects a 3200-fold purification from yeast homogenate in one pass; simple additional steps produce enzyme that has been purified 6700-fold and is not contaminated by any other protein that can be detected by sodium dodecyl sulfate-acrylamide gel electrophoresis. Overall, 35% of the activity present in the yeast is recovered as pure enzyme. The resin for the column is synthesized by attaching the ethylenediamine amide of 5-(2-carboxyethyl)-6-azauridine 5'-phosphate to carboxymethyl-agarose.  相似文献   

4.
Yeast orotidine-5'-phosphate decarboxylase was recently shown to contain zinc and to be inhibited by zinc-complexing agents. When the gene for the yeast enzyme was expressed in Escherichia coli, the gene product was devoid of metal atoms but exhibited a specific activity and molecular mass similar to those of the enzyme obtained directly from yeast. This invalidates the hypothesis that zinc is involved in substrate decarboxylation. The zinc-free enzyme undergoes thermal inactivation at a somewhat lower temperature than does the zinc-containing enzyme isolated from yeast.  相似文献   

5.
C Li  H D Peck  Jr    A E Przybyla 《Journal of bacteriology》1986,165(2):644-646
A PyrF- mutant of Escherichia coli (SK1108, pyrF::Tn5 Kanr) was complemented with the Desulfovibrio vulgaris (Hildenborough) structural gene for orotidine-5'-phosphate decarboxylase (EC 4.1.1.23). Either orientation of a 1.6-kilobase-pair D. vulgaris DNA fragment (pLP3B or pLP3A) complemented the PyrF- strain suggesting that the D. vulgaris pyrF promoter was functional. The apparent product of the D. vulgaris pyrF gene was a single 26-kilodalton polypeptide. These results demonstrate the utility of E. coli cloning systems in studying metabolic and energetic pathways in sulfate-reducing bacteria.  相似文献   

6.
A rapid, continuous spectrophotometric method has been developed for the assay of decarboxylases. The assay uses a coupled enzyme system in which liberated CO2 is reacted with phosphoenolpyruvate and phosphoenolpyruvate carboxylase to form oxaloacetate, which in turn is reduced by malate dehydrogenase to L-malate concomitantly with the oxidation of NADH to NAD. The resultant decrease in absorbance at 340 nm accurately reflects the activity of the decarboxylase. The method is capable of detecting the liberation of as little as 1 nmol of CO2/min and was tested in assays of lysine decarboxylase, orotidine-5'-phosphate decarboxylase, and 4'-phosphopantothenoyl-L-cysteine decarboxylase.  相似文献   

7.
We have made constructs that join the promoter sequences and a portion of the coding region of the Saccharomyces cerevisiae HIS4 and GAL1 genes and the E. coli lacZ gene to the sixth codon of the S. cerevisiae URA3 gene (encodes orotidine-5'-phosphate (OMP) decarboxylase) to form three in frame protein fusions. In each case the fusion protein has OMP decarboxylase activity as assayed by complementation tests and this activity is properly regulated. A convenient cassette consisting of the URA3 segment plus some immediately proximal amino acids of HIS4C is available for making URA3 fusions to other proteins of interest. URA3 fusions offer several advantages over other systems for gene fusion analysis: the URA3 specified protein is small and cytosolic; genetic selections exist to identify mutants with either increased or decreased URA3 function in both yeast (S. cerevisiae and Schizosaccharomyces pombe) and bacteria (Escherichia coli and Salmonella typhimurium); and a sensitive OMP decarboxylase enzyme assay is available. Also, OMP decarboxylase activity is present in mammals, Drosophila and plants, so URA3 fusions may eventually be applicable in these other organisms as well.  相似文献   

8.
Relief of an auxotrophic requirement for uridine in Aspergillus nidulans strain G191 has been achieved by transformation with a segment of Neurospora crassa DNA containing the corresponding gene coding for orotidine-5'-phosphate decarboxylase. The mitotic stability of such transformants suggests that the DNA has integrated into the genome. Southern hybridisation analysis of DNA isolated from transformants revealed the presence of pBR322 sequences which have integrated into the host genome along with the N. crassa DNA.  相似文献   

9.
We describe a general protocol for using comparative NMR metabolomics data to infer in vivo efficacy, specificity and toxicity of chemical leads within a drug discovery program. The methodology is demonstrated using Aspergillus nidulans to monitor the activity of urate oxidase and orotidine-5'-phosphate decarboxylase and the impact of 8-azaxanthine, an inhibitor of urate oxidase. 8-azaxanthine is shown to inhibit A. nidulans hyphal growth by in vivo inactivation of urate oxidase.  相似文献   

10.
Repression of biosynthetic enzyme synthesis in Pseudomonas putida is incomplete even when the bacteria are growing in a nutritionally complex environment. The synthesis of four of the enzymes of the arginine biosynthetic pathway (N-acetyl-alpha-glutamokinase/N-acetylglutamate-gamma-semialdehyde dehydrogenase, ornithine carbamoyltransferase and acetylornithine-delta-transaminase) could be repressed and derepressed, but the maximum difference observed between repressed and derepressed levels for any enzyme of the pathway was only 5-fold (for ornithine carbamoyltransferase). No repression of five enzymes of the pyrimidine biosynthetic pathway (aspartate carbamoyltransferase, dihydro-orotase, dihydro-orotate dehydrogenase, orotidine-5'-phosphate pyrophosphorylase and orotidine-5'-phosphate decarboxylase) could be detected on addition of pyrimidines to minimal asparagine cultures of P. putida A90, but a 1-5- to 2-fold degree of derepression was found following pyrimidine starvation of pyrimidine auxotrophic mutants of P. putida A90. Aspartate carbamoyltransferase in crude extracts of P. putida A90 was inhibited in vitro by (in order of efficiency) pyrophosphate, CTP, UTP and ATP, at limiting but not at saturating concentrations of carbamoyl phosphate.  相似文献   

11.
The crystal structures of the enzyme orotidine-5'-monophosphate decarboxylase from Methanobacterium thermoautotrophicum complexed with its product UMP and the inhibitors 6-hydroxyuridine 5'-phosphate (BMP), XMP, and CMP are reported. A mutant version of the protein, in which four residues of the flexible phosphate-binding loop (180)Gly-Gly(190) were removed and Arg(203) was replaced by alanine, was also analyzed. The XMP and CMP complexes reveal a ligand-binding mode that is distinct from the one identified previously with the aromatic rings located outside the binding pocket. A potential pathway for ligand binding is discussed.  相似文献   

12.
13.
Histidine decarboxylase of supernatants as well as of purified preparations from rat gastric mucosa is inactivated by a non-specific phosphatase in the absence of pyridoxal 5'-phosphate. The inactivation is a time and concentration-dependent process. Pyridoxal 5'-phosphate, but not histidine, protects the enzyme against phosphatase action. The inactivation is reversible, only pyridoxal 5'-phosphate reactivates the inactivated enzyme. Pyridoxamine 5'-phosphate is ineffective for histidine decarboxylase, but is converted into an active coenzyme only in gastric supernatant. Evidence for the occurrence of an active phosphatase in gastric tissue is also presented; its properties are those of an acid phosphatase and are similar to those of phosphatases hydrolyzing pyridoxal 5'-phosphate in other tissues. The data indicate that phosphatase promotes apoenzyme formation and may play a role in the regulation of histamine synthesis.  相似文献   

14.
Y Sakai  T Kazarimoto    Y Tani 《Journal of bacteriology》1991,173(23):7458-7463
An integrative transformation system was established for an asporogenous methylotrophic yeast, Candida boidinii. This system uses a uracil auxotrophic mutant of C. boidinii as the host strain in combination with its URA3 gene as the selectable marker. First, the C. boidinii URA3 gene coding for orotidine-5'-phosphate decarboxylase (ODCase) was cloned by using complementation of the pyrF mutation of Escherichia coli. Next, the host ODCase-negative mutant strains (ura3 strains) were isolated by mutagenesis and selection for 5-fluro-orotic acid (5-FOA) resistance. Five ura3 host strains that exhibited both a low reversion rate and good methylotrophic growth were obtained. All of these strains could be transformed to Ura+ phenotype with a C. boidinii URA3-harboring plasmid linearized within the Candida DNA. The transformants had a stable Ura+ phenotype after nonselective growth for 10 generations. These results and extensive Southern analysis indicated that the linearized plasmid was integrated into the host chromosomal DNA by homologous recombination at the URA3 locus in C. boidinii.  相似文献   

15.
The biodegradative ornithine decarboxylase of Escherichia coli has been purified to apparent homogeneity. At its pH optimum (pH 7.0), the enzyme exists as a dimer of 160,000 molecular weight. Aggregation of the dimer was promoted by lower pH values. The enzyme requires pyridoxal 5'-phosphate for activity. The coenzyme appears to be bound in Schiff base linkage as suggested by spectral studies and inhibition by NaBH4. The following sequence was determined for the coenzyme binding site: Val-His-(epsilon-Pxy)Lys-Gln-Gln-Ala-Gly-Gln. The properties of this enzyme are compared with the other biodegradative amino acid decarboxylases that have been isolated from E. coli.  相似文献   

16.
Development of a high-frequency transforming vector for Aspergillus nidulans   总被引:18,自引:0,他引:18  
D J Ballance  G Turner 《Gene》1985,36(3):321-331
The pyr4 gene of Neurospora crassa, which codes for orotidine-5'-phosphate decarboxylase, is capable of transforming an Aspergillus nidulans pyrG mutant by chromosomal integration, despite low homology between the transforming DNA and the recipient genome. Integration of pFB6, a plasmid carrying pyr4 and capable of replication in Escherichia coli, was not observed at the pyrG locus. The efficiency of transformation was considerably enhanced (50-100 fold) by inclusion in the transforming vector of a 3.5-kb A.nidulans chromosomal sequence, ans1. Although this sequence was isolated on the basis of replicating activity in Saccharomyces cerevisiae, there was no evidence for such activity in A.nidulans. Part of the ans1 fragment appears to be reiterated in the A.nidulans genome, though it is not yet clear whether this is directly responsible for the high transformation frequency. The efficiency of transformation of A.nidulans by plasmids bearing ans1, using an improved protocol, was approx. 5 X 10(3) stable transformants per microgram of plasmid DNA.  相似文献   

17.
18.
A 3969-base pair PstI-PstI fragment of Pseudomonas cepacia DNA containing the gene for the pyridoxal 5'-phosphate dependent 2,2-dialkylglycine decarboxylase (pyruvate) (EC 4.1.1.64) was cloned in Escherichia coli. The insert was sequenced by the dideoxy method using nested deletions from both ends, revealing a central 1302-base pair region that codes for the decarboxylase subunit. The recombinant enzyme was expressed in E. coli, purified to homogeneity, and sequenced at the amino terminus. Also, a cofactor-labeled active site peptide was sequenced. The carboxyl terminus of the deduced amino acid sequence is homologous with the carboxyl terminus of mammalian ornithine aminotransferase; the active site sequence is similar to the active site sequences of several other aminotransferases. No homologies with known decarboxylase sequences could be found. Expression of the decarboxylase gene is negatively controlled by a 687-nucleotide sequence upstream of and diverging from the structural gene. Expression is induced by S-isovaline, 2-methylalanine, and D-2-aminobutanoic acid, but not by glycine, D- or L-alanine, L-2-aminobutanoic acid, R-isovaline, or other alkyl amino acids.  相似文献   

19.
A cDNA library was constructed in the yeast expression vector pYcDE8 using mRNA from the phytopathogenic fungus Ustilago maydis and cDNAs capable of complementing mutations in three yeast genes, URA3, LEU2 and TPI1, were identified. Nucleotide sequence analysis indicated that the cDNA clone, which complemented the yeast ura3 mutation, carries the pyr6 gene encoding orotidine-5'-phosphate decarboxylase. The genomic copy of the pyr6 gene was isolated by hybridization with the cDNA and used to complement a pyr- mutant of U. maydis. One-step gene disruption was demonstrated by transforming U. maydis with a copy of the pyr6 gene interrupted in the coding region by a selectable marker for resistance to hygromycin B.  相似文献   

20.
Arginine decarboxylase (arginine carboxy-lyase, EC 4.1.1.19) from Mycobacterium smegmatis, TMC 1546 has been purified to homogeneity. The enzyme has a molecular mass of 232 kDa and a subunit mass of 58.9 kDa. The enzyme from mycobacteria is totally dependent on pyridoxal 5'-phosphate for its activity at its optimal pH and, unlike that from Escherichia coli, Mg2+ does not play an active role in the enzyme conformation. The enzyme is specific for arginine (Km = 1.6 mM). The holoenzyme is completely resolved in dialysis against hydroxylamine. Reconstitution of the apoenzyme with pyridoxal 5'-phosphate shows sigmoidal binding characteristics at pH 8.4 with a Hill coefficient of 2.77, whereas at pH 6.2 the binding is hyperbolic in nature. The kinetics of reconstitution at pH 8.4 are apparently sigmoidal, indicating the occurrence of two binding types of differing strengths. A low-affinity (Kd = 22.5 microM) binding to apoenzyme at high pyridoxal 5'-phosphate concentrations and a high-affinity (Kd = 3.0 microM) binding to apoenzyme at high pyridoxal 5'-phosphate concentrations. The restoration of full activity occurred in parallel with the tight binding (high affinity) of pyridoxal 5'-phosphate to the apoenzyme. Along with these characteristics, spectral analyses of holoenzyme and apoenzyme at pH 8.4 and pH 6.2 indicate a pH-dependent modulation of coenzyme function. Based on the pH-dependent changes in the polarity of the active-site environment, pyridoxal 5'-phosphate forms different Schiff-base tautomers at pH 8.4 and pH 6.2 with absorption maxima at 415 nm and 333 nm, respectively. These separate forms of Schiff-base confer different catalytic efficiencies to the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号