首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Cho S  Huang ZY  Zhang J 《Genetics》2007,177(3):1733-1741
Sex-determination mechanisms vary greatly among taxa. It has been proposed that genetic sex-determination pathways evolve in reverse order from the final step in the pathway to the first step. Consistent with this hypothesis, doublesex (dsx), the most downstream gene in the Drosophila sex-determination cascade that determines most sexual phenotypes also determines sex in other dipterans and the silk moth, while the upstream genes vary among these species. However, it is unknown when dsx was recruited to the sex-determination pathway during insect evolution. Furthermore, sex-specific splicing of dsx, by which dsx determines sex, is different in pattern and mechanism between the moth and the fly, raising an interesting question of how these insects have kept the executor of sex determination while allowing flexibility in the means of execution. To address these questions, here we study the dsx gene of the honeybee Apis mellifera, a member of the most basal lineage of holometabolous insects. We report that honeybee dsx is sex-specifically spliced and that it produces both the fly-type and moth-type splicing forms, indicating that the use of different splicing forms of Dsx in controlling sexual differentiation was present in the common ancestor of holometabolous insects. Our data suggest that in ancestral holometabolous insects the female Dsx form is the default and the male form is generated by suppressing the splicing of the female form. Thus, it is likely that the dsx splicing activator system in flies, where the male form is the default, arose during early dipteran evolution.  相似文献   

5.
RBP1 is an important splicing factor involved in alternative splicing of the pre-mRNA of Drosophila sex-determining gene dsx. In this work, the Bombyx mori homologue of the rbp1 gene, Bmrbp1, was cloned. The pre-mRNA of Bmrbp1 gene is alternatively spliced to produce four mature mRNAs, named Bmrbp1-PA, Bmrbp1-PB, Bmrbp1-PC and Bmrbp1-PD, with nucleotide lengths of 799 nt, 1,316 nt, 894 nt and 724 nt, coding for 142 aa, 159 aa, 91 aa and 117 aa, respectively. BmRBP1-PA and BmRBP1-PD contain a N terminal RNA recognization motif (RRM) and a C terminal arginine/serine-rich domain, while BmRBP1-PB and BmRBP1-PC only share a RRM. Amino acid sequence alignments showed that BmRBP1 is conserved with its homologues in other insects and with other SR family proteins. The RT-PCR showed that Bmrbp1-PA was strongly expressed in all examined tissues and development stages, but Bmrbp1-PB was weakly expressed in these tissues and stages. The expression of both Bmrbp1-PA and Bmrbp1-PB showed no obvious sex difference. While the Bmrbp1-PC and Bmrbp1-PD were beyond detection by RT-PCR very likely due to their tissue/stage specificity. These results suggested that Bmrbp1 should be a member of SR family splicing factors, whether it is involved in the sex-specific splicing of Bmdsx pre-mRNA needs further research.  相似文献   

6.
The Gossypium MIC-3 (Meloidogyne Induced Cotton-3) gene family is of great interest for molecular evolutionary studies because of its uniqueness to Gossypium species, multi-gene content, clustered localization, and root-knot nematode resistance-associated features. Molecular evolution of the MIC-3 gene family was studied in 15 tetraploid and diploid Gossypium genotypes that collectively represent seven phylogenetically distinct genomes. Synonymous (dS) and non-synonymous (dN) nucleotide substitution rates suggest that the second of the two exons of the MIC-3 genes has been under strong positive selection pressure, while the first exon has been under strong purifying selection to preserve function. Based on nucleotide substitution rates, we conclude that MIC-3 genes are evolving by a birth-and-death process and that a ‘gene amplification’ mechanism has helped to retain all duplicate copies, which best fits with the “bait and switch” model of R-gene evolution. The data indicate MIC-3 gene duplication events occurred at various rates, once per 1 million years (MY) in the allotetraploids, once per ~2 MY in the A/F genome clade, and once per ~8 MY in the D-genome clade. Variations in the MIC-3 gene family seem to reflect evolutionary selection for increased functional stability, while also expanding the capacity to develop novel “switch” pockets for responding to diverse pests and pathogens. Such evolutionary roles are congruent with the hypothesis that members of this unique resistance gene family provide fitness advantages in Gossypium.  相似文献   

7.
Nucleotide sequences of the immunoglobulin constant heavy chain genes of the horse have been described for IGHM, IGHG and IGHE genes, but not for IGHA. Here, we provide the nucleotide sequence of the genomic IGHA gene of the horse (Equus caballus), including its secretion region and the transmembrane exon. The equine IGHA gene shows the typical structure of a mammalian IGHA gene, with only three exons, separated by two introns of similar size. The hinge exon is located at the 5 end of the CH2 exon and encodes a hinge region of 11 amino acids, which contains five proline residues. The coding nucleotide sequence of the secreted form of the equine IGHA gene shares around 72% identity with the human IGHA1 and IGHA2 genes, as well as the bovine, ovine, porcine and canine IGHA genes, without distinct preference for any of these species. The same species also cluster together in a phylogenetic tree of the IGHA coding regions of various mammals, whereas rodent, rabbit, marsupial and monotreme IGHA genes each build a separate cluster.The nucleotide sequences reported in this paper have been assigned the EMBL/GenBank accession numbers AY247966 and AY351982  相似文献   

8.
For the first time, the sequences of the TROSPA gene from taiga tick and sheep tick from Russia were obtained. Three specimens of sheep tick from Voronezh oblast and three specimens each of taiga tick from Irkutsk oblast and Perm krai were analyzed. At the end of the intron of the TROSPA gene in Ixodes persulcatus, a poly-T region was found. In addition, a fragment of the first exon containing a large number of differences in the nucleotide and amino acid composition both among species and within them was identified.  相似文献   

9.
The female and male gametophytes are critical components of the angiosperm life cycle and are essential for the reproductive process. The gametophytes share many essential cellular processes with each other and with the sporophyte generation. As a consequence, these processes can only be analyzed genetically in the gametophyte generation. Here, we report the characterization of the gametophytic factor 1 (gfa1) mutant. The gfa1 mutation exhibits reduced transmission through both the female and male gametophytes. Reduced transmission through the female gametophyte is due to an effect on female gametophyte development. By contrast, development of the pollen grain is not affected in gfa1; rather, reduced transmission is likely due to an effect on pollen tube growth. We have identified multiple T-DNA-insertion alleles of gfa1 in a gene encoding a protein with high similarity to Snu114/U5-116 kD proteins from yeast and animals required for normal pre-mRNA splicing. Consistent with its predicted function, the GFA1 gene (At1g06220) is expressed throughout the plant. Together, these data suggest that GFA1 functions in mRNA splicing during the plant life cycle. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
11.
12.
Allelic diversity at major histocompatibility complex (MHC) genes is thought to be maintained by balancing selection over long periods of time, even across multiple speciation events. Trans-species sharing of MHC alleles among genera has been supported by many studies on mammals and fish, but in rodents, the results are ambiguous. We investigated natural levels of MHC-DRB variability and evolutionary processes in the wood mouse (Apodemus sylvaticus) and the yellow-necked mouse (Apodemus flavicollis), which are common, sympatric murid rodents in European forests. Using single-strand conformation polymorphism analysis and DNA sequencing, 38 DRB exon 2 alleles were detected among 162 A. sylvaticus from nine different locations in Germany and Switzerland, and 15 DRB exon 2 alleles were detected among 60 A. flavicollis from three different locations in northern Germany. There was evidence for balancing selection in both species. Phylogenetic analysis, including additional murid taxa, showed that the DRB exon 2 sequences did not separate according to species, consistent with trans-species evolution of the MHC in these taxa.  相似文献   

13.
Zhang H  Mao X  Zhang J  Chang X  Wang C  Jing R 《Genetica》2011,139(6):743-753
Sucrose non-fermenting1-related protein kinase 2 (SnRK2) plays a key role in plant stress signaling transduction pathways. In this study, one copy of TaSnRK2.7, a SnRK2 member of common wheat, was isolated and characterized for nucleotide diversity among 45 wheat accessions with different stress-response features. Most of the accessions were elite wheat cultivars, which had been subject to population bottlenecks and intensive selection during breeding. Nucleotide and haplotype diversity across the entire TaSnRK2.7-A region was 0.00076 and 0.590, respectively, and diversity in non-coding regions was higher than that in coding regions. Sliding-window analysis showed variable levels of nucleotide variation along the entire TaSnRK2.7-A region; the sixth intron and ninth exon represented variation-enriched regions. As predicted, neutrality tests revealed that population bottlenecks or purifying selection had acted on the TaSnRK2.7-A gene, a relatively conserved gene. Furthermore, strong linkage disequilibrium between SNP loci extends across the entire TaSnRK2.7-A region. These findings demonstrate that the TaSnRK2.7-A genomic region has evolved under extensive selection pressure during crop breeding.  相似文献   

14.
We developed molecular diagnostic assays for the detection of Streptococcus pyogenes (GAS) and Streptococcus dysgalactiae subsp. equisimilis (SDSE), two streptococcal pathogens known to cause both pharyngitis and more invasive forms of disease in humans. Two real-time PCR assays coupled with an internal control were designed to be performed in parallel. One assay utilizes a gene target specific to GAS, and the other utilizes a gene target common to the two species. Both assays showed 2–3 orders of magnitude improved analytical sensitivity when compared to a commercially available rapid antigen test. In addition, when compared to standard culture in an analysis of 96 throat swabs, the real-time PCR assays resulted in clinical sensitivity and specificity of 91.7 and 100%, respectively. As capital equipment costs for real-time PCR can be prohibitive in smaller laboratories, the real-time PCR assays were converted to a low-density microarray format designed to function with an inexpensive photopolymerization-based non-enzymatic signal amplification (NESA™) method. S. pyogenes was successfully detected on the low-density microarray in less than 4 h from sample extraction through detection.  相似文献   

15.
SnRK2s are a large family of plant-specific protein kinases, which play important roles in multiple abiotic stress responses in various plant species. But the family in Gossypium has not been well studied. Here, we identified 13, 10, and 13 members of the SnRK2 family from Gossypium raimondii, Gossypium arboreum, and Gossypium hirsutum, respectively, and analyzed the locations of SnRK2 homologs in chromosomes based on genome data of cotton species. Phylogenetic tree analysis of SnRK2 proteins showed that these families were classified into three groups. All SnRK2 genes were comprised of nine exons and eight introns, and the exon distributions and the intron phase of homolog genes among different cotton species were analogous. Moreover, GhSnRK2.6 was overexpressed in Arabidopsis and upland cotton, respectively. Under salt treatment, overexpressed Arabidopsis could maintain higher biomass accumulation than wild-type plants, and GhSnRK2.6 overexpression in cotton exhibited higher germination rate than the control. So, the gene GhSnRK2.6 could be utilized in cotton breeding for salt tolerance.  相似文献   

16.
To distinguish between Escherichia coli and other bacteria that have similar biochemical characteristics, 3 polymerase chain reaction techniques were combined. The primer sets cydA-F2-A2 and cydA-R2-A2 were designed to amplify 605 base pairs of nucleotide sequence specific for the cydA gene of Escherichia coli; primer sets lacZ-F-A and lacZ-R-A to amplify 1,023 bp of nucleotide sequence specific for the lacZ gene of Escherichia coli; and primers lacA-F2-A2 and lacA-R2-A2 to amplify 325 bp of nucleotide sequence specific for the lacA gene of Escherichia coli. As a result, 3 nucleotide fragments were generated when 3 samples DNA from Escherichia coli were used as template. On the other hand, 1,023- and 605-bp products were obtained when DNA of Shigella sonnei was used, and a 605-bp product was obtained when DNA of Shigella flexneri was used. The specificity of the technique was confirmed by comparing it with the conventional culture test; the consistency rate of both tests was 0.749. These results suggest that the technique described in the present study will be useful for distinguishing Escherichia coli from Shigella species with accuracy and specificity.  相似文献   

17.
18.
19.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号