首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Na+ (Li+)-proline cotransport inEscherichia coli   总被引:3,自引:0,他引:3  
Summary Na+ and Li+ were found to stimulate the transport ofl-proline by cells ofEscherichia coli induced for proline utilization. The gene product of the put P gene is involved in the expression of this transport activity since the put P+ strains CSH 4 and WG 148 show activity and the put P strain RM 2 fails to show this cation coupled transport. The addition of proline was found to stimulate the uptake of Li+ and of Na+. Attempts to demonstrate proline stimulated H+ uptake were unsuccessful. It is concluded that the proline carrier (coded by the put P gene) is responsible for Na+ (or Li+)-proline cotransport.  相似文献   

2.
In Saccharomyces cerevisiae Jen1p is a lactate/proton symporter belonging to the lactate/pyruvate:H+ symporter subfamily (TC#2.A.1.12.2) of the Major Facilitator Superfamily. We investigated structure-function relationships of Jen1p using a rational mutational analysis based on the identification of conserved amino acid residues. In particular, we studied the conserved sequence 379NXX[S/T]HX[S/T]QDXXXT391. Substitution of amino acid residues N379, H383 or D387, even with very similar amino acids, resulted in a dramatic reduction of lactate and pyruvate uptake, but conserved measurable acetate transport. Acetate transport inhibition assays showed that these mutants conserve the ability to bind, but do not transport, lactate and pyruvate. More interestingly, the double mutation H383D/D387H, while behaving as a total loss-of-function allele for lactate and pyruvate uptake, can fully restore the kinetic parameters of Jen1p for acetate transport. Thus, residues N379, H383 or D387 affect both the transport capacity and the specificity of Jen1p. Substitutions of Q386 and T391 resulted in no or moderate changes in Jen1p transport capacities for lactate, pyruvate and acetate. On the other hand, Q386N reduces the binding affinities for all Jen1p substrates, while Q386A increases the affinity specifically for pyruvate. We also tested Jen1p specificity for a range of monocarboxylates. Several of the mutants studied showed altered inhibition constants for these acids. These results and 3D in silico modelling by homology threading suggest that the conserved motif analyzed is part of the substrate translocation pathway in the lactate/pyruvate:H+ symporter subfamily.  相似文献   

3.
The transport specificity of system y+L of human erythrocytes was investigated and the carrier was found to accept a wide range of amino acids as substrates. Relative rates of entry for various amino acids were estimated from their trans-effects on the unidirectional efflux of l-[14C]-lysine. Some neutral amino acids, l-lysine and l-glutamic acid induced marked trans-acceleration of labeled lysine efflux; saturating concentrations of external l-leucine and l-lysine increased the rate by 5.3±0.63 and 6.2±0.54, respectively. The rate of translocation of the carrier-substrate complex is less dependent on the structure of the amino acid than binding. Translocation is slower for the bulkier analogues (l-tryptophan, l-phenylalanine); smaller amino acids, although weakly bound, are rapidly transported (l-alanine, l-serine). Half-saturation constants (±sem) calculated from this effect (l-lysine, 10.32±0.49 m and l-leucine, 11.50±0.50 m) agreed with those previously measured in cis-inhibition experiments. The degree of trans-acceleration caused by neutral amino acids did not differ significantly in Na+, Li+ or K+ medium, whereas the affinity for neutral amino acids was dramatically decreased if Na+ or Li+ were replaced by K+. The observation that specificity is principally expressed in substrate binding indicates that the carrier reorientation step is largely independent of the forces of interaction between the carrier and the transport site.We wish to thank Dr C.A.R. Boyd for helpful discussions and Prof. H.N. Christensen for sharing with us very relevant bibliographic material. We are grateful to FONDECYT (1282/91) and DTI (B 2674) (Chile) for financial assistance.  相似文献   

4.
Campylobacter sputorum subspecies bubulus was grown in continuous culture with excess of l-lactate or formate, and growth-limiting amounts of oxygen, fumarate, nitrate or nitrite. l-Lactate was oxidized to acetate, fumarate was reduced to succinate, and nitrate and nitrite were reduced to ammonia. The Y lactate values (g dry weight bacteria/g mol lactate) for the respective hydrogen acceptors were much higher than the Y formate values. Steady state cultures on formate and nitrite could only be obtained at a low dilution rate and low nitrite concentrations in the growth medium. In H+/2e measurements with lactate-grown cells proton ejections were observed with lactate or pyruvate as a hydrogen donor, and oxygen or hydrogen peroxide as a hydrogen acceptor. Proton ejection was also observed with pyruvate and nitrate. Proton ejection did not occur with lactate and nitrate, neither with lactate or pyruvate and fumarate or nitrite. With formate as a hydrogen donor acidification occurred with all hydrogen acceptors mentioned. It has been concluded that during growth on lactate and fumarate or nitrite substrate level phosphorylation at acetate formation is the sole ATP-generating system. Growth on formate and fumarate or nitrite is explained by a proton gradient generated as a result of oxidation of formate at the periplasmic side of the cytoplasmic membrane. With oxygen and nitrate additional ATP is formed by electron transport-linked phosphorylation. The low molar growth yields with formate are explained by the observation that formate-grown cells had a great permeability to protons.Abbreviations H+/2e value number of protons ejected per electron pair transported in the respiratory system - P/2e value mol of ATP formed per electron pair transported in the respiratory system - CCCP carbonyl cyanide m-chlorophenyl-hydrazone  相似文献   

5.
Summary A transport system for branched-chain amino acids (designated as LIV-II system) inPseudomonas aeruginosa requires Na+ for its operation. Coupling cation for this system was identified by measuring cation movement during substrate entry using cation-selective electrodes. Uptakes of Na+ and Li were induced by the imposition of an inwardly-directed concentration gradient of leucine, isoleucine, or valine. No uptake of H was found, however, under the same conditions. In addition, effects of Na+ and Li+ on the kinetic property of the system were examined. At chloride salt concentration of 2.5mm, values of apparentK m andV max for leucine uptake were larger in the presence of Na+ than Li+. These results indicate that the LIV-II transport system is a Na+(Li+)/substrate cotransport system, although effects of Na+ and Li+ on kinetics of the system are different.  相似文献   

6.
We have investigated effects of various energy substrates including glucose, lactate and pyruvate on the recovery of the high energy phosphate levels after high-K+ stimulation in rat brain slices by using 31P NMR. It was found that lactate, pyruvate and glucose almost equally supported the recovery of phosphocreatine (PCr) levels after high-K+ stimulation (60 mM, 8 min) in artificial cerebrospinal fluid (ACSF). In iodoacetic acid (IAA) and fluorocitrate (FC)-pretreated slices, whereas glucose was unable to be utilized, the recovery of the PCr level after high-K+ stimulation in ACSF containing lactate was completely abolished, the recovery of the PCr in ACSF containing pyruvate was unaffected. These results indicate that neurons themselves can utilize pyruvate as an exogenous energy substrate, but not lactate, without glial support. In intact brain, glucose may be metabolized to pyruvate in glial cells and then transported to neurons as an energy substrate. These suggest an astrocyte-neuron pyruvate shuttle mechanism of the brain energy metabolism in vivo.We also investigated the effect of ischemic-preconditioning in FC-pretreated slices, which showed that the PCr levels recovered substantially in ACSF containing lactate after high-K+ stimulation. This indicates that after the preconditioning, such as ischemia, neurons themselves acquired the ability to utilize lactate as an energy substrate.  相似文献   

7.
Summary [14C]Phthalate is transported into L1210 cells via two separate routes, an anion exchange system whose primary substrates are folate compounds, and a second less active system which is sensitive to bromosulfophthalein. When the principal uptake component was blocked by a specific irreversible inhibitor of this system, the remaining route (at pH 7.4) appeared to be saturable and was inhibited by several anions in addition to bromosulfophthalein (K i =2 m), including 8-anilino-1-naphthalein sulfonate (K i =25 m), unlabeled phthalate (K i =500 m), and chloride (K i =3500 m). A pronounced effect by pH was also observed. Influx and total uptake of phthalate both increased progressively with decreasing pH and reached values that were 20-fold higher at pH 6.0, compared with pH 7.4. This pH-dependent increase could be blocked, however, by the addition of compounds (nigericin and carbonylcyanidem-chlorophenylhydrazone) which, in combination, collapse proton gradients. Phthalate efflux was relatively insensitive to changes in extracellular pH but could be inhibited (up to 90%) by bromosulfophthalein. Several other anions also inhibited efflux, but to a lesser extent, while chloride, phthalate, lactate, glycolate and acetate enhanced efflux up to 1.8-fold. Efflux also increased at pH 6.0, but not at pH 7.5, upon addition of nigericin and carbonylcyanidem-chlorophenylhydrazone. These results suggest that phthalate is a nonphysiological substrate for a carrier system which mediates transport via an anion/H+ symport mechanism. This system is not the lactate/H+ symport carrier of L1210 cells since: (A) phthalate and lactate influx were inhibited to differing degrees by various anions; and (B) lactic anhydride inhibited the influx and efflux of lactate but had no effect on the transmembrane movement of phthalate. The specificity of this system suggests that its primary anion substrate may be chloride.  相似文献   

8.
Summary Ion: solute cotransporters frequency are incapable of achieving equilibrium between the solute accumulation and the transmembrane difference of the electrochemical potential of the ion. The presence of uncoupled flows of ion and solutes (leaks) is often advanced as an explanation. Here an alternative is discussed. The net accumulation of solute may be so slow that equilibrium can never be attained at finite times (e.g., several hours). Cotransporters may exhibit strong product inhibition, and the net influx of solute approaches zero far from equilibrium. The inherent slowness of net transport under these conditions is termed catalytic inefficiency. The likelihood that galactoside: H+ cotransport inEscherichia coli, hexose: H+ cotransport inChlorella vulgaris, andd-glucose: Na+ cotransport in brush-border membranes exhibit catalytic inefficiency is examined. The existence of strong product inhibition complicates the determination of the stoichiometry of cotransport and the characterization of chemically modified or mutant cotransporters.  相似文献   

9.
L-lactate transport mechanism across rat jejunal enterocyte was investigated using isolated membrane vesicles. In basolateral membrane vesicles l-lactate uptake is stimulated by an inwardly directed H+ gradient; the effect of the pH difference is drastically reduced by FCCP, pCMBS and phloretin, while furosemide is ineffective. The pH gradient effect is strongly temperature dependent. The initial rate of the proton gradient-induced lactate uptake is saturable with respect to external lactate with a K m of 39.2 ± 4.8 mm and a J max of 8.9 ± 0.7 nmoles mg protein−1 sec−1. A very small conductive pathway for l-lactate is present in basolateral membranes. In brush border membrane vesicles both Na+ and H+ gradients exert a small stimulatory effect on lactate uptake. We conclude that rat jejunal basolateral membrane contains a H+-lactate cotransporter, whereas in the apical membrane both H+-lactate and Na+-lactate cotransporters are present, even if they exhibit a low transport rate. Received: 22 October 1996/Revised: 11 March 1997  相似文献   

10.
Functional characterization of Na+-d-glucose cotransport in intestine and kidney indicates the existence of heterogeneous Na+-d-glucose cotransport systems. Target size analysis of the transporting unit and model analysis of substrate binding have been performed and proteins have been cloned which mediate (SGLT1) and modulate (RS1) the expression of Na+-d-glucose cotransport. The experiments support the hypothesis that functional Na+-d-glucose cotransport systems in mammals are composed of two SGLT1-type subunits and may contain one or two RS1-type proteins. SGLT1 contains up to twelve membrane-spanning -helices, whereas RS1 is a hydrophilic extracellular protein which is anchored in the brush-border membrane by a hydrophobic -helix at the C-terminus. SGLT1 alone is able to translocate glucose together with sodium; however, RS1 increases the V max of transport expressed by SGLT1. In addition, the biphasic glucose dependence of transport, which is typical for kidney and has been often observed in intestine, was only obtained after coexpression of SGLT1 and RS1.  相似文献   

11.
In a previous study, we characterized a lactose permease mutant (K319N/E325Q) that can transport H+ ions with sugar. This result was surprising because other studies had suggested that Glu-325 plays an essential role in H+ binding. To determine if the lactose permease contains one or more auxiliary H+ binding sites, we began with the K319N/E325Q strain, which catalyzes a sugar-dependent H+ leak, and isolated third site suppressor mutations that blocked the H+ leak. Three types of suppressors were obtained: H322Y, H322R, and M299I. These mutations blocked the H+ leak and elevated the apparent K m value for lactose. The M299I and H322Y suppressors could still transport H+ with β-d-thiodigalactoside (TDG), but the H322R strain appeared uncoupled for H+/sugar cotransport. Four mutant strains containing a nonionizable substitution at codon 322 (H322Q) were analyzed. None of these were able to catalyze uphill accumulation of lactose, however, all showed some level of substrate-induced proton accumulation. The level seemed to vary based on the substrate being analyzed (lactose or TDG). Most interestingly, a triple mutant, K319N/H322Q/E325Q, catalyzed robust H+ transport with TDG. These novel results suggest an alternative mechanism of lactose permease cation binding and transport, possibly involving hydronium ion (H3O+). Received: 6 November 2000/Revised: 23 March 2001  相似文献   

12.
Workshop 7: 2     
Glutamine, the preferred precursor for neurotransmitter glutamate, is likely to be the principal substrate for the neuronal System A transporter SAT1 in vivo. By measuring currents associated with SAT1 expression in Xenopus oocytes, we found that SAT1 mediates transport of small, neutral, aliphatic amino acids including glutamine, alanine and the System A‐specific analogue 2‐(methylamino) isobutyrate, each with K0.5 of 0.3–0.5 mm . Amino acid transport is driven by the Na+ electrochemical gradient. Kinetic data indicates that Na+/cotransport comprises the ordered binding first of Na+ (a voltage‐dependent step), then alanine, then simultaneous translocation. Li+ (but not H+) can substitute for Na+ but results in reduced Vmax. In the absence of amino acid, SAT1 mediates a cation leak with selectivity Na+, Li+, H+, K+. The temperature‐dependence of the leak current (Ea = 17 ± 3 kcal/mol) is consistent with carrier‐mediated Na+ uniport activity (cf 13 ± 2 kcal/mol for Na+/alanine cotransport) but the leak does not saturate at physiological [Na+], suggesting channel activity. Despite a Na+ Hill coefficient of 1, we obtained Na+/amino acid coupling coefficients greater than 1 from simultaneous measurement of charge and [3H]alanine or [3H]glutamine uptake. Interpretation of these data is model‐dependent and consistent with either (1) an all‐carrier model in which Na+/amino acid cotransport is thermodynamically coupled 2 : 1, cotransport is preferred over Na+ uniport, and in which there is little cooperativity between Na+ binding events, or (2) 1 : 1 coupling in parallel with an always‐on Na+ channel activity. In either scenario, the presence of SAT1 at the plasma membrane and resultant Na+ fluxes will place a significant energy burden on the cell.  相似文献   

13.
System y+L is a broad-scope amino acid transporter which binds and translocates cationic and neutral amino acids. Na+ replacement with K+ does not affect lysine transport, but markedly decreases the affinity of the transporter for l-leucine and l-glutamine. This observation suggests that the specificity of system y+L varies depending on the ionic composition of the medium. Here we have studied the interaction of the carrier with various amino acids in the presence of Na+, K+, Li+ and guanidinium ion. In agreement with the prediction, the specificity of system y+L was altered by the monovalent cations. In the presence of Na+, l-leucine was the neutral amino acid that interacted more powerfully. Elongation of the side chain (glycine - l-norleucine) strengthened binding. In contrast, bulkiness at the level of the β carbon was detrimental. In K+, the carrier behaved as a cationic amino acid specific carrier, interacting weakly with neutral amino acids. Li+ was found to potentiate neutral amino acid binding and in general the apparent affinities were higher than in Na+; elongation of the nonpolar side chain made a more important contribution to binding and the carrier was more tolerant towards β carbon substitution. Guanidinium stimulated the interaction of the carrier with neutral amino acids, but the effect was restricted to certain analogues (e.g., l-leucine, l-glutamine, l-methionine). Thus, in the presence of guanidinium, the carrier discriminates sharply among different neutral amino acids. The results suggest that the monovalent cations stabilize different carrier conformations. Received: 22 January 1996/Revised: 26 April 1996  相似文献   

14.
Monocarboxylate transporters (MCT) and sodium-bicarbonate cotransporters (NBC) transport acid/base equivalents and coexist in many epithelial and glial cells. In nervous systems, the electroneutral MCT1 isoform cotransports lactate and other monocarboxylates with H+, and is believed to be involved in the shuttling of energy-rich substrates between astrocytes and neurons. The NBC cotransports bicarbonate with sodium and generates a membrane current. We have expressed these transporter proteins, cloned from rat brain (MCT1) and human kidney (NBC), alone and together, by injecting the cRNA into oocytes of the frog Xenopus laevis, and measured intracellular pH changes and membrane currents under voltage-clamp with intracellular microelectrodes, and radiolabeled lactate uptake into the oocytes. We determined the cytosolic buffer capacity, the H+ and lactate fluxes as induced by 3 and 10 mM lactate in oocytes expressing MCT1 and/or NBC, and in water-injected oocytes, in salines buffered with 5 mM HEPES alone or with 5% CO2/10 mM HCO3 (pH 7.0). In MCT1 + NBC- but not in MCT1- or NBC-expressing oocytes, lactate activated a Na+- and HCO3-dependent membrane current, indicating that lactate/H+ cotransport via MCT1, due to the induced pH change, stimulates NBC activity. Lactate/H+ cotransport by MCT1 was increased about twofold when MCT1 was expressed together with NBC. Our results suggest that the facilitation of MCT1 transport activity is mainly due to the increase in apparent buffer capacity contributed by the NBC, and thereby suppresses the build-up of intracellular H+ during the influx of lactate/H+, which would reduce MCT1 activity. Hence these membrane transporters functionally cooperate and are able to increase ion/metabolite transport activity.  相似文献   

15.
d-Glucose absorptive processes at the gastrointestinal tract of decapod crustaceans are largely under-investigated. We have studied Na+-dependent d-glucose transport (Na+/d-glucose cotransport) in the hepatopancreas of the Kuruma prawn, Marsupenaeus japonicus, using both brush-border membrane vesicles and purified R and B hepatopancreatic cell suspensions. As assessed by brush-border membrane vesicle studies, Na+/d-glucose cotransport was inhibited by phloridzin and responsive to the (inside negative) membrane potential. Furthermore, it was strongly activated by protons (although only in the presence of an inside-negative membrane potential), which correlates with the fact that the lumen of crustacean hepatopancreatic tubules is acidic. When assayed in purified R and B cell suspensions, Na+/d-glucose cotransport activity was restricted to B cells only. Mab 13, a monoclonal antibody recognizing an 80- to 85-KDa protein at the brush-border membrane location, inhibited Na+/D-glucose cotransport in brush-border membrane vesicles as well as in enriched B cell suspensions. Primers designed after comparison of highly homologous regions of various mammalian sodium-glucose transporter) nucleotide sequences failed to produce RT-PCR amplification products from Kuruma prawn hepatopancreatic RNA. The molecular nature of this Na+/d-glucose cotransport system is still to be established.Communicated by: G. Heldmaier  相似文献   

16.
Summary The Ehrlich tumor cell possesses and anion-cation cotransport system which operates as a bidirectional exchanger during the physiological steady state. This cotransport system, like that associated with the volume regulatory mechanism (i.e. coupled net uptake of Cl+Na+ and/or K+) is Cl-selective and furosemide-sensitive, suggesting the same mechanism operating in two different modes. Since Na+ has an important function in the volume regulatory response, its role in steady-state cotransport was investigated. In the absence of Na+, ouabain-insensitive K+ and DIDS-insensitive Cl transport (KCl cotransport) are low and equivalent to that found in 150mm Na+ medium containing furosemide. Increasing the [Na+] results in parallel increases in K+ and Cl transport. The maximum rate of each (18 to 20 meq/(kg dry wt)·min) is reached at about 20mm Na+ and is maintained up to 55mm. Thus, over the range 1 to 55mm Na+ the stoichiometry of KCl cotransport is 11. In contrast to K+ and Cl, furosemide-sensitive Na+ transport is undetectable until the [Na+] exceeds 50mm. From 50 to 150mm Na+, it progressively rises to 7 meq/(kg dry wt)·min, while K+ and Cl transport decrease to 9 and 16 meq/(kg dry wt)·min, respectively. Thus, at 150mm Na+ the stoichiometric relationship between Cl, Na+ and K+ is 211. These results are consistent with the proposal that the Cl-dependent cation cotransport system when operating during the steady state mediates the exchange of KCl for KCl or NaCl for NaCl; the relative proportion of each determined by the extracellular [Na+].  相似文献   

17.
Summary The yeastRhodotorula gracilis accumulated glucuronate by an H+/symport. The transport was electroneutral, driven by the chemical gradient of protons pH. The observed stoichiometry amounted to 1 proton per molecule glucuronate. At pH 4, the half-saturation constantK T was at its lowest value (K T =8mm), whereas the maximal velocityV T reached a maximum (V T =15 nmol/min×mg dry wt). Monosaccharides competitively inhibited the uptake of glucuronate and vice versa. Hence, the two substrates share the same transport system. The steady-state accumulation of glucuronate reflected the course of the pH gradient. It is concluded that glucuronate is transported as an anionic substrate by the protonated carrier, the driving force being the chemical gradient of the H+ (pH). The ternary carrier/H+/glc-COOO-complex is electroneutral and independent of the membrane potential. Simultaneous uptake of organic acids (acetic or propionic acid) which is also energized by the pH gradient led to a noncompetitive inhibition of glucuronate transport. Thus, manipulation of the driving force, pH, reducedV T without affectingK T . Kinetic and energetic arguments are presented which stronly suggest that only the protonated carrier is catalytically active inR. gracilis.  相似文献   

18.
Lactic acid was transported in Fusarium oxysporum var. lini ATCC 10960 by a saturable transport system that had a half-saturation constant of 56.6 ± 7.5 μM and a maximum velocity of 0.61 ± 0.10 mmol h-1 g-1 (dry weight) at 26°C and pH 5.0. This transport system was inducible and was not expressed in the presence of a repressing substrate. Evidence is presented that the anionic form lactate- was taken up by the cells. Propionic, acetic, pyruvic, and bromoacetic acids but not succinic acid competitively inhibited the transport of lactic acid. Bromoacetic acid, which was not metabolized, was taken up to a steady-state level when intracellular and extracellular concentrations were identical, indicating that the transport system was not accumulative. The enzymatic activity that was physiologically more relevant in the metabolism of lactic acid was lactate: ferricytochrome c oxidase. This enzyme did not exhibit stereospecifity and was induced by lactic acid.  相似文献   

19.
Summary Thel-alanine-dependent transport of sodium ions across the plasma membrane of rat-liver parenchymal cells was studied using isolated plasma membrane vesicles. Sodium uptake is stimulated specifically by thel-isomer of alanine and other amino acids, whose transport is sodium-dependent in rat-liver plasma membrane vesicles. Thel-alanine-dependent sodium flux across the membrane is inhibited by an excess of Li+ ions, but not by K+ or choline ions. Sodium transport is sensitive to-SH reagents and ionophores, and is an electrogenic process: a membrane potential (negative inside) can enhancel-alanine-dependent sodium accumulation. The data presented provide further evidence for a sodium-alanine cotransport mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号