首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
普通小麦99-2439中的白粉病抗性遗传   总被引:6,自引:0,他引:6  
普通冬小麦品系99-2439在郑州连续4年对田间白粉菌(Blumeria graminis sp.tritici)表现高抗,但其抗性基因来源不清.通过染色体C-分带和IRS染色体特异性SCAR标记鉴定,表明它是一个小麦-黑麦(Triticum aestivum-Secale cereale)lBL/1RS异易位系.通过对中国春×99-2439杂交F2代分离群体抗性鉴定和1RS染色体臂检测结果分析,证明该抗病基因不在1RS染色体臂上.用单孢小麦白粉菌分离株对其抗性遗传进行研究,结果表明,99-2439的白粉病抗性由一对小种专化、隐性抗病基因控制.由于携带Pm5a的Hope/8Cc对中国的21个小麦白粉菌分离菌株均高度感病,而99-2439高抗混和白粉菌和5个单孢分离菌株,所以,99-2439所携带的抗白粉病基因不同于Pm5a.  相似文献   

2.
普通冬小麦品系99-2439在郑州连续4年对田间白粉菌(Blumeria graminis sp. tritici)表现高抗,但其抗性基因来源不清。通过染色体C-分带和1RS染色体特异性SCAR标记鉴定, 表明它是一个小麦-黑麦(Triticum aestivum - Secale cereale)1BL/1RS异易位系。通过对中国春×99-2439杂交F2代分离群 体抗性鉴定和1RS染色体臂检测结果分析, 证明该抗病基因不在1RS染色体臂上。用单孢小麦白粉菌分离株对其抗性遗传进行研究, 结果表明, 99-2439的白粉病抗性由一对小种专化、隐性抗病基因控制。由于携带Pm5a的Hope/8Cc对中国的21个小麦白粉菌分离菌株均高度感病, 而99-2439高抗混和白粉菌和5个单孢分离菌株, 所以, 99-2439所携带的抗白粉病基因不同于Pm5a。  相似文献   

3.
Peusha H  Enno T  Priilinn O 《Hereditas》2000,132(1):29-34
Common wheat cv. Meri was crossed to a set of 21 Chinese Spring monosomic lines to characterize resistance to powdery mildew and to determine the chromosomal location of the gene(s). Monosomic F1 plants were allowed to self-pollinate and to produce F2 seeds. Seedlings of F2 and F3 plants and their parents were inoculated with isolates Ns 2 and 9 of Erysiphe graminis f. sp. tritici. Analysis of obtained data revealed that one major dominant gene conferring resistance is located on chromosome 1B of cv. Meri. The new gene is designated by symbol Pm28. On the basis of the trivalent configuration frequency (without univalent) at the 1st metaphase of meiosis it was found that two reciprocal translocations involving chromosomes 2A/5A and 5B/5D differentiate cv. Meri from cv. Chinese Spring. In the F1 monosomic hybrids, genes causing a decrease in pairing are found on chromosomes 4D and 6D, and genes enhancing pairing--on chromosomes 3A and 7B.  相似文献   

4.
Two dominant powdery mildew resistance genes introduced from Triticum carthlicum accession PS5 to common wheat were identified and tagged using microsatellite markers. The gene designated PmPS5A was placed on wheat chromosome 2AL and linked to the microsatellite marker Xgwm356 at a genetic distance of 10.2 cM. Based on the information of its origin, chromosome location, and reactions to 5 powdery mildew isolates, this gene could be a member of the complex Pm4 locus. The 2nd gene designated PmPS5B was located on wheat chromosome 2BL with 3 microsatellite markers mapping proximally to the gene: Xwmc317 at 1.1 cM; Xgwm111 at 2.2 cM; and Xgwm382 at 4.0 cM; and 1 marker, Xgwm526, mapping distally to the gene at a distance of 18.1 cM. Since this gene showed no linkage to the other 2 known powdery mildew resistance genes on wheat chromosome 2B, Pm6 and Pm26, we believe it is a novel powdery mildew resistance gene and propose to designate this gene as Pm33.  相似文献   

5.
Genetic characterization of powdery mildew resistance genes were conducted in common wheat cultivars Hope and Selpek possessing resistance gene Pm5, cvs. Ibis and Kormoran expressing resistance gene Mli, a backcross-derived line IGV 1–455 and a Triticum sphaerococcum var. rotundatum Perc. line Kolandi. Monosomic analyses revealed that one major recessive gene is located on chromosome 7B in the lines IGV 1–455 and Kolandi. Allelism tests of the F2 and F3 populations involving the tested resistant lines crossed with either cv. Hope or Selpek indicated that their resistance genes are alleles at the Pm5 locus. The alleles are now designated Pm5a in Hope and Selpek, Pm5b in Ibis and Kormoran, Pm5c in T. sphaerococcum var. rotundatum line Kolandi, and Pm5d in backcross-derived line IGV 1–455, respectively. Received: 5 November 1999 / Accepted: 14 April 2000  相似文献   

6.
 The chromosomal location and genetic characterization of powdery mildew resistance genes were determined in the common wheat lines MocZlatka, Weihenstephan Stamm M1N and in a resistant line of Triticum aestivum ssp. spelta var. duhamelianum. Monosomic analyses revealed that one major dominant gene is located on chromosome 7A in each of the lines tested. Allelism tests with Pm1 in the backcross-derived line Axminster/8*Cc on 7A indicated that the resistance genes are alleles at the Pm1 locus. These alleles are now designated Pm1a in line Axminster/8*Cc, Pm1b in MocZlatka, Pm1c in Weihenstephan Stamm M1N, and Pm1d in T. spelta var. duhamelianum, respectively. Received: 10 November 1997 / Accepted: 29 January 1998  相似文献   

7.
Powdery mildew is one of the most destructive foliar diseases of wheat. A set of differential Blumeria graminis f.sp. tritici (Bgt) isolates was used to test the powdery mildew response of a Triticum monococcum-derived resistant hexaploid line, Tm27d2. Segregation analysis of 95 F2:3 lines from a Chinese Spring/Tm27d2 cross revealed that the resistance of Tm27d2 is controlled by a single dominant gene. Using monosomic analysis and a molecular mapping approach, the resistance gene was localized to the terminal end of chromosome 2AL. The linkage map of chromosome 2AL consisted of nine simple sequence repeat markers and one sequence-tagged site (STS) marker (ResPm4) indicative for the Pm4 locus. According to the differential reactions of 19 wheat cultivars/lines with known powdery mildew resistance genes to 13 Bgt isolates, Tm27d2 carried a new resistance specificity. The complete association of the resistance allele with STS marker ResPm4 indicated that it represented a new allele at the Pm4 locus. This new allele was designated Pm4d. The two flanking markers Xgwm526 and Xbarc122 closely linked to Pm4d at genetic distances of 3.4 and 1.0 cM, respectively, are present in chromosome bin 2AL1-0.85-1.00.  相似文献   

8.
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most serious wheat diseases. The rapid evolution of the pathogen's virulence, due to the heavy use of resistance genes, necessitates the expansion of resistance gene diversity. The common wheat line D57 is highly resistant to powdery mildew. A genetic analysis using an F(2) population derived from the cross of D57 with the susceptible cultivar Yangmai 158 and the derived F(2:3) lines indicated that D57 carries two dominant powdery mildew resistance genes. Based on mapping information of polymorphic markers identified by bulk segregant analysis, these two genes were assigned to chromosomes 5DS and 6DS. Using the F(2:3) lines that segregated in a single-gene mode, closely linked PCR-based markers were identified for both genes, and their chromosome assignments were confirmed through linkage mapping. The gene on chromosome 5DS was flanked by Xgwm205 and Xmag6176, with a genetic distance of 8.3 cM and 2.8 cM, respectively. This gene was 3.3 cM from a locus mapped by the STS marker MAG6137, converted from the RFLP marker BCD1871, which was 3.5 cM from Pm2. An evaluation with 15 pathogen isolates indicated that this gene and Pm2 were similar in their resistance spectra. The gene on chromosome 6DS was flanked by co-segregating Xcfd80 and Xmag6139 on one side and Xmag6140 on the other, with a genetic distance of 0.7 cM and 2.7 cM, respectively. This is the first powdery mildew resistance gene identified on chromosome 6DS, and plants that carried this gene were highly resistant to all of the 15 tested pathogen isolates. This gene was designated Pm45. The new resistance gene in D57 could easily be transferred to elite cultivars due to its common wheat origin and the availability of closely linked molecular markers.  相似文献   

9.
选用来自我国不同地区的20个白粉病菌毒性菌株,对54个CIMMYT小麦品种(系)进行抗病性分析.结果表明:(1)34个品种(系)含有抗病基因,以Pm8基因出现频率最高,有15个品种(系)携带该基因;(2)参试主效基因中,Pm1、Pm3e、Pm5、Pm6和Pm7基因已丧失对我国白粉菌的抗性,Pm16和Pm20基因的抗性最强;(3)50个1B/1R易位系品种(系)中31个含有抗病基因,48%的抗病1B/1R易位系可检测到Pm8基因.根据田间成株期病程曲线下面积(AUDPC)聚类分析结果,可将54份材料分为高抗、中抗、中感和高感4类,7个品种(系)不含任何主效抗病基因而田间表现中到高的抗性,是典型慢病性品种.  相似文献   

10.
The genetics of resistance to powdery mildew caused by Blumeria graminis f. sp. avenae of four cultivated oats was studied using monosomic analysis. Cultivar ‘Bruno’ carries a gene (Pm6) that shows a recessive mode of inheritance and is located on chromosome 10D. Cultivar ‘Jumbo’ possesses a dominant resistance gene (Pm1) on chromosome 1C. In cultivar ‘Rollo’, in addition to the gene Pm3 on chromosome 17A, a second dominant resistance gene (Pm8) was identified and assigned to chromosome 4C. In breeding line APR 122, resistance was conditioned by a dominant resistance gene (Pm7) that was allocated to chromosome 13A. Genetic maps established for resistance genes Pm1, Pm6 and Pm7 employing amplified fragment length polymorphism (AFLP) markers indicated that these genes are independent of each other, supporting the results from monosomic analysis.  相似文献   

11.
Powdery mildew is an important foliar disease in wheat, especially in areas with a cool or maritime climate. A dominant powdery mildew resistance gene transferred to the hexaploid germplasm line NC99BGTAG11 from T. timopheevii subsp. armeniacum was mapped distally on the long arm of chromosome 7A. Differential reactions were observed between the resistance gene in NC99BGTAG11 and the alleles of the Pm1 locus that is also located on chromosome arm 7AL. Observed segregation in F2:3 lines from the cross NC99BGTAG11 × Axminster (Pm1a) demonstrate that germplasm line NC99BGTAG11 carries a novel powdery mildew resistance gene, which is now designated as Pm37. This new gene is highly effective against all powdery mildew isolates tested so far. Analyses of the population with molecular markers indicate that Pm37 is located 16 cM proximal to the Pm1 complex. Simple sequence repeat (SSR) markers Xgwm332 and Xwmc790 were located 0.5 cM proximal and distal, respectively, to Pm37. In order to identify new markers in the region, wheat expressed sequence tags (ESTs) located in the distal 10% of 7AL that were orthologous to sequences from chromosome 6 of rice were targeted. The two new EST-derived STS markers were located distal to Pm37 and one marker was closely linked to the Pm1a region. These new markers can be used in marker-assisted selection schemes to develop wheat cultivars with pyramids of powdery mildew resistance genes, including combinations of Pm37 in coupling linkage with alleles of the Pm1 locus.  相似文献   

12.
采用定位于小麦2B染色体上的72对分子标记对含小麦抗白粉病基因Pm6的8份普通小麦(T.aestivum L.)-提莫菲维(T.timopheevii zhuk.)渐渗系材料进行分析, 通过分子标记标图确定8份材料中渗入的提莫菲维小麦染色体片段的大小, 同时结合连锁图谱对这些材料进行了遗传和物理标图。参考本研究所用的分子标记在染色体2B上的定位结果, Pm6基因被位于2B 染色体长臂近末端2BL-6区域, 提莫菲维小麦2G染色体渐渗片断长度由短到长排列顺序为: IGV1-465相似文献   

13.
Segregation analysis of resistance to powdery mildew in a F2 progeny from the cross Chinese Spring (CS) × TA2682c revealed the inheritance of a dominant and a recessive powdery mildew resistance gene. Selfing of susceptible F2 individuals allowed the establishment of a mapping population segregating exclusively for the recessive resistance gene. The extracted resistant derivative showing full resistance to each of 11 wheat powdery mildew isolates was designated RD30. Amplified fragment length polymorphism (AFLP) analysis of bulked segregants from F3s showing the homozygous susceptible and resistant phenotypes revealed an AFLP marker that was associated with the recessive resistance gene in repulsion phase. Following the assignment of this AFLP marker to wheat chromosome 7A by means of CS nullitetrasomics, an inspection of simple sequence repeat (SSR) loci evenly spaced along chromosome 7A showed that the recessive resistance gene maps to the distal region of chromosome 7AL. On the basis of its close linkage to the Pm1 locus, as inferred from connecting partial genetic maps of 7AL of populations CS × TA2682c and CS × Virest (Pm1e), and its unique disease response pattern, the recessive resistance gene in RD30 was considered to be novel and tentatively designated mlRD30.Communicated by C. Möllers  相似文献   

14.
Chinese rye cultivar Jingzhouheimai (Secale cereale L.) shows a high level of resistance to powdery mildew. Identification, location, and mapping of the resistance gene would be helpful for developing a highly resistant germplasm or cultivar in wheat. Using sequential C-banding, GISH, and marker analysis, an addition chromosome with powdery mildew resistance was identified in a line derived from a cross between Chinese wheat landrace Huixianhong and rye cultivar Jingzhouheimai. The line, designated H-J DA2RDS1R(1D), had 44 chromosomes including two pairs of rye chromosomes, 1R and 2R, and lacked a pair of wheat chromosomes 1D, that is, it is a double disomic addition disomic substitution line. According to its reaction to different isolates of the powdery mildew pathogen, the resistance gene in H-J DA2RDS1R(1D) differed from the Pm8 and Pm7 genes located earlier on rye chromosomes 1R and 2R, respectively. In order to determine the location of the resistance gene, line H-J DA2RDS1R(1D) was crossed with wheat landrace Huixianhong and the F2 population and corresponding F2:3 families were tested for disease reaction and assessed with molecular markers. The results showed that a resistance gene, designated PmJZHM2RL, is located in rye chromosome arm 2RL.  相似文献   

15.
The powdery mildew resistance gene Pm22, identified in the Italian wheat cultivar Virest and originally assigned to wheat chromosome 1D, was mapped to chromosome 7A with the aid of molecular markers. Mapping of common AFLP and SSR markers in two wheat crosses segregating for Pm22 and Pm1c, respectively, indicated that Pm22 is a member of the complex Pm1 locus. Pm22 also showed a pattern of resistance reaction to a differential set of Blumeria graminis f. sp. tritici isolates that was distinguishable from those from other Pm1 alleles in lines Axminster/8*Cc ( Pm1a), MocZlatka ( Pm1b), Weihenstephan Stamm M1N ( Pm1c) and Triticum spelta var. duhamelianum TRI 2258 ( Pm1d). Based on these results, the gene symbol Pm1e is proposed for the powdery mildew resistance gene in cv. Virest.  相似文献   

16.
Powdery mildew, caused by Erysiphe graminis DM f. sp. tritici (Em. Marchal), is one of the most important diseases of common wheat world-wide. Chinese wheat variety 'Fuzhuang 30' carries the powdery mildew resistance gene Pm5e and has proven to be a valuable resistance source of powdery mildew for wheat breeding. Microsatellite markers were employed to identify the gene Pm5e in a F(2) progeny from the cross 'Nongda 15' (susceptible) x 'Fuzhuang 30' (resistant). The gene Pm5e was mapped in the distal region of chromosome 7BL. Seven microsatellite markers were found to be linked to the gene Pm5e, of which two codominant markers Xgwm783 and Xgwm1267 were relatively close to Pm5e with a linkage distance of 11.0 cM and 6.6 cM, respectively. It is possible to use the 136-bp allele of Xgwm1267 in 'Fuzhuang 30' for marker-assisted selection during the wheat resistance breeding process for facilitation of gene pyramiding. The mapping information in the present study provides a starting point for fine mapping of the Pm5 locus and map-based cloning to clarify the molecular structure and function of the different alleles at the Pm5 locus. A microsatellite linkage map of chromosome 7B was constructed with 20 microsatellite loci, nine on the short arm and 11 on the long arm. This information will be very useful for further mapping of agronomically important genes of interest on chromosome 7B.  相似文献   

17.
Awn absence was shown to be inherited as a dominant character in the tetraploid wheat species Triticum dicoccum (Schrank) Schuebl. and T. durum Desf. but as a recessive one in T. aethiopicum Jakubz. The monogenic control of the character was demonstrated for all studied species. In accessions of emmer and durum wheat, the character is controlled by the dominant gene B1, located on chromosome 5A, and in Ethiopian wheat, by a recessive gene, which we designated as awn. The recessive awn gene was localized on chromosome 3B of T. aethiopicum with the use of D-genome disomic substitution lines of cultivar Langdon.  相似文献   

18.
小麦近缘种属来源的抗白粉病基因是培育小麦抗病品种,防治白粉病危害的最重要基因来源。Pm57是位于西尔斯山羊草2S^s#l染色体长臂上的一个外源基因,对小麦白粉病具有苗期和成株期广谱抗性。为了创制Pm57白粉病抗性丧失突变体,利用基于基因突变体的植物抗病基因克隆新兴技术分离Pm57基因,选用0.625%的甲基磺酸乙酯(EMS)对1万粒小麦-西尔斯山羊草Pm57易位系89(5)69种子进行了诱变处理,M1大田密播种植,收获了1598个M2可育株系。初步对其中300个M2株系进行苗期白粉病抗性接种鉴定,并利用2个Pm57基因特异分子标记X2L4g9P4/HaeⅢ和X284274及小麦全国区试品系DUS测试所用的42对SSR核心引物对Pm57抗性丧失突变体进行鉴定,筛选出来自27个M2株系的真实抗性丧失突变体70个,Pm57基因抗性丧失突变体频率达到9.0%。本研究所获得的白粉病抗性丧失突变体为Pm57基因的后续克隆与抗白粉病分子机理研究提供了重要的材料基础。  相似文献   

19.
VE161小麦促进部分同源染色体配对的遗传   总被引:7,自引:3,他引:4  
VE161小麦包括具有一对长穗偃麦草染色体的雄性不育代换系、可育附加系和杂育系,杂育系由其代换系×附加系产生。VE161小麦在与其它小麦品系的杂交F1中,具有促进部分同源染色体配对的作用,但其本身部分同源配对频率较低。研究结果表明,VE161小麦本身部分同源染色体配对水平较低,是因其小麦染色体组中存在有一对纯合隐性上位基因,它能够抑制E染色体(Eph基因),促进部分同源染色体配对作用的表达,而一般小麦品系中具有该基因的相对显性基因。同时,在促进小麦部分同源染色体配对作用上,E染色体(Eph基因)具有剂量效应  相似文献   

20.
本研究以普通小麦——“中国春”的单体系统和多子房小麦杂交,确定控制多子房性状的基因数目及关键染色体。通过单体分析,初步确定多子房性状分别受染色体5D和6B上的2个非互补的同效异位被动隐性基因所控制,分别用m_1和m_2表示。 继续用“中国春”双端体5DL、6BL和6BS分别与多子房进行正反交,在5DL、6BL与多子房的正反交F_1植株上均出现多子房表型。由此确定,控制多子房性状的m_1、m_2基因分别位于染色体5D和6B的短臂上(5DS、6BS)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号