首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accessory triradii and the atd angle were examined via complex segregation analysis in order to evaluate possible genetic effects on these dermatoglyphic traits, measured in an endogamous Brahmin caste of peninsular India. The phenotypes considered included: presence of accessory palmar triradii a' and d', associated with the interdigital areas II and IV, respectively; presence of an accessory axial triradius tt' associated with the proximal margin of the palm; and an arctanh-transformation of the atd angle measurement. For all accessory triradii considered in the present investigation familial resemblance was evident. The most parsimonious model which could account for the observed resemblance was a multifactorial model that includes polygenic effects as well as transmissible environmental effects that are inherited in the same pattern as polygenes. Evidence of familial resemblance was also found for the arctanh-transformed atd angle, which could be attributed, initially, to both a major effect and a multifactorial component. Tests of transmission of a putative major gene were performed which yielded results consistent with Mendelian transmission, although an alternative test of no transmission of the major effect also fit the data. In light of these contrasting results we are precluded from accepting with confidence the notion of a major gene influence on the atd angle. We have concluded that the accessory triradii a', d', and tt', and the atd angle are influenced by multifactorial effects, including additive polygenes and possible environmental factors, such as intrauterine effects.  相似文献   

2.
Palmar pattern ridge counts were subjected to segregation analysis in an attempt to identify possible major gene effects on these dermatoglyphic traits. The phenotypes considered were total palmar pattern ridge count, and ridge counts for the right interdigital III and IV and left interdigital IV individual palmar areas (sample sizes were too small for the other palmar areas). Evidence of familial resemblance was found for all of the phenotypes studied, and initial evidence for a major effect was found for all but the right palm interdigital III ridge count. However, this initial evidence could be attributed to nongenetic effects in each case, including skewness in the trait distribution. Tests for agreement with Mendelian transmission frequencies were found to be very useful in discriminating between a non-Mendelian major effect and a major gene. We concluded against a major gene effect for any of these traits, and multifactorial inheritance remains a plausible alternative explanation for the familial resemblance.  相似文献   

3.
A major gene hypothesis for resting metabolic rate (RMR) was investigated using segregation analysis (POINTER) of data on families participating in Phase 2 of the Québec Family Study. Complete analyses were conducted on RMR adjusted for age, and also on RMR adjusted for age and other covariates, primarily fat mass (FM) and fat-free mass (FFM). Prior to adjustment for covariates, support for a major gene hypothesis was equivocal — i.e., there was evidence for either a major gene or a multifactorial component (i.e., polygenic and/or familial environment). The multifactorial model was preferred over the major gene model, although the latter did segregate according to Mendelian expectations. However, after the effects of FM and FFM were accounted for, a major gene effect was unambiguous and compelling. The putative locus accounted for 57% of the variance, affected 7% of the sample, and led to high values of RMR. The lack of a significant multifactorial effect suggested that the familial etiology of RMR adjusted for FM and FFM was likely to be entirely a function of the major locus. Comparing the RMR results from pre- and post-adjustment for FM and FFM suggests a plausible hypothesis. We know from earlier studies in this sample that there is a putative major gene for FM and a major non-Mendelian effect for FFM. The current study leads us to speculate that: (1) the gene(s) affecting body size and body composition also may have an effect on RMR, and further (2) removal of the effect of the major gene(s) for body size and composition allowed for detection of an additional major gene affecting only the RMR. Thus, RMR appears to be an oligogenic trait.  相似文献   

4.
RICE, TREVA, JP DESPRÉS, LOUIS PÉRUSSE, JACQUES GAGNON, ARTHUR S LEON, JAMES S SKINNER, JACK H WILMORE, DC RAO, CLAUDE BOUCHARD. Segregation analysis of abdominal visceral fat: The HERITAGE Family Study. A major gene hypothesis for abdominal visceral fat (AVF) level, both before and after adjustment for total body fat mass, was investigated in 86 white families who participated in the HERITAGE Family Study. In this study, sedentary families were tested for a battery of measures (baseline), endurance exercise trained for 20 weeks, and then remeasured again. The baseline measures reported here are unique in that the variance due to a potentially important environmental factor (activity level) was limited. AVF area was assessed at L4 to L5 by the use of computerized tomography scan, and total body fat mass was assessed with underwater weighing. For fat mass, a putative locus accounted for 64% of the variance, but there was no evidence of a multifactorial component (i.e., no polygenic and/or common familial environmental effects). For AVF area, both a major gene effect accounting for 54% of the variance and a multifactorial component accounting for 17% of the variance were significant. However, after AVF area was adjusted for the effects of total level of body fat, the support for a major gene was reduced. In particular, there was a major effect for fat mass-adjusted AVF area, but it was not transmitted from parents to offspring (i.e., the three transmission probabilities were equal). The importance of this study is twofold. First, these results confirm a previous study that suggested that there is a putative major locus for AVF and for total body fat mass. Second, the findings from the HERITAGE Family Study suggest that the factors underlying AVF area in sedentary families may be similar to those in the population at large, which includes both sedentary and active families. Whether the gene(s) responsible for the high levels of AVF area is the same as that which influences total body fat content remains to be further investigated.  相似文献   

5.
The evidence for a major gene for body mass index (BMI) was investigated using complex segregation analysis (POINTER) in 1691 individuals belonging to 432 nuclear families residing in the Chittoor district of Andhra Pradesh, India. Since the BMI is significantly correlated with energy intake (EI) and energy expenditure of activity (EEA), the effects of each were removed from the BMI using regression analysis, and the segregation analysis was repeated on the energy-adjusted BMI. For BMI, a putative major locus could not be ruled out, and the effect (q = 0.25, accounting for 37% of the phenotypic variance) was remarkably similar to that reported in Western populations. After adjusting the BMI for EI and EEA, however, no evidence in support of a major gene could be observed, suggesting either that EI and EEA mediate the expression of the major gene effect on BMI, or that the same major gene may influence both traits. The pleiotropy hypothesis was further explored using a simple bivariate familial correlation model, in which the significance of familial cross-trait correlations (e.g., BMI in parents with BMI as predicted from the energy variables in the offspring) was examined. The cross-trait resemblance between the two measures was significant for all biological relatives, verifying the presence of shared heritable determinants (i.e., the same gene[s] and/or familial environments) accounting for 58% of the covariation. The significant cross-trait spouse correlations further suggested that at least part of the cross-trait resemblance may be due to shared environmental factors. Therefore, we conclude that there is strong evidence for shared genetic effects between BMI and the energy variables.  相似文献   

6.
Objective: It is commonly recognized that genetic, environmental, behavioral, and social factors are involved in the development of obesity. The family environment may play a key role in shaping children's eating behaviors. The purpose of this study was to estimate the degree of familial resemblance in eating behavioral traits (cognitive dietary restraint, disinhibition, and susceptibility to hunger). Research Methods and Procedures: Eating behavioral traits were assessed with the Three‐Factor Eating Questionnaire in 282 men and 402 women (202 families) from the Quebec Family Study. Familial resemblance for each trait (adjusted for age, sex, and BMI) was investigated using a familial correlation model. Results: The pattern of familial correlation showed significant spouse correlation for the three eating behavior phenotypes, as well as significant parent‐offspring and sibling correlations for disinhibition and susceptibility to hunger. According to the most parsimonious model, generalized heritability estimates (including genetic and shared familial environmental effects) reached 6%, 18%, and 28% for cognitive dietary restraint, disinhibition, and susceptibility to hunger, respectively. Discussion: These results suggest that there is a significant familial component to eating behavioral traits but that the additive genetic component appears to be small, with generalized heritability estimates ranging from 6% to 28%. Thus, non‐familial environmental factors and gene‐gene and gene‐environmental interactions seem to be the major determinants of the eating/behavioral traits.  相似文献   

7.
Interest in a single gene etiology for obesity, as assessed by the body mass index (BMI), has been spurred recently by reports of a putative recessive major gene for extreme values, which accounts for as much as 40% of the variance. The major gene hypothesis was evaluated here in the Québec Family Study, a random sample of 375 French-Canadian volunteer families. This report represents one component in a more complete investigation of obesity in these families. In contrast to the recent studies, a major gene hypothesis for BMI was not verified here. Although there was a major effect, it did not conform to a Mendelian pattern of transmission. A multifactorial component (i.e., polygenic and/or common environmental factors) accounted for 42% of the phenotypic variance. In addition, evidence of heterogeneity between the generations was found. The heterogeneity was traced to the major non-Mendelian component (which accounted for 0.01% of the variance in parents and over 40% in offspring) rather than to the multifactorial one. These results would suggest that a simple recessive gene mixed model may not be sufficient to explain the familial distribution of the BMI. Several factors which may have contributed to these results include temporal trends and surrogate effects such as those related to variation in body composition and energy balance components. (OBESITY RESEARCH 1993; 1:288–294)  相似文献   

8.
The Human Genome Project and eugenic concerns.   总被引:4,自引:3,他引:1       下载免费PDF全文
The U.S. Human Genome project is the largest scientific project funded by the federal government since the Apollo Moon Project. The overall effect from this project should be of great benefit to humankind because it will provide a better understanding both of single gene defects and multifactorial or familial diseases such as diabetes, arteriosclerosis, and cancer. At first this will lead to more exact ways of screening and diagnosing genetic disease, and later it will lead, in many if not most instances, to specific genetic cures. However, in the past, in both the U.S. and German eugenic movements genetic information has been misused. Hopefully, by remembering and understanding the past injustices and inhumanity of negative eugenics, further misuse of scientific information can be avoided.  相似文献   

9.
The body mass index (BMI) is a complex phenotype representing the amount of fat mass, lean mass, body build and proportions, and it is likely to be affected by various metabolic processes, hormonal effects, energy intake and expenditure, and interactions within and among these broad categories of etiologic factors. Nonetheless, several previous studies have reported evidence for major gene segregation for the BMI in various populations. Data on a random sample of Caucasian families participating in the National Heart, Lung, and Blood Institute (NHLBI) Family Heart Study were analyzed to document the extent of familial resemblance and to investigate whether a similar monogenic inheritance pattern could be detected. Genetic analysis was carried out on age- and sex-adjusted BMI values. Familial correlations were significant implying a maximal heritability, including all genetic and environmentally inherited additive factors, of 41% to 59%. Segregation analysis revealed the presence of two maximum likelihood solutions, one characterized as a recessive Mendelian gene and the other as a major effect with an ambiguous transmission pattern. The presence of two such solutions is consistent with detection of two separate factors, each influencing the BMI distribution in a substantive manner. The evidence also supports a multifactorial background for BMI and suggests that the frequencies of these two factors, one of which appears to be a gene, may vary among diverse populations in the United States.  相似文献   

10.
A general method for maximum-likelihood estimation of familial correlations from pedigree data is presented. The method is applicable to any type of data structure, including pedigrees in which variable numbers of individuals are present within classes of relatives, data in which multiple phenotypic measures are obtained on each individual, and multiple group analyses in which some correlations are equated across groups. The method is applied to data on high-density lipoprotein cholesterol and total cholesterol levels obtained from participants in the Swedish Twin Family Study. Results indicate that there is strong familial resemblance for both traits but little cross-trait resemblance.  相似文献   

11.
The hypothesis of a genetic control of plasma angiotensin I-converting enzyme (ACE) level has been suggested both by segregation analysis and by the identification of an insertion/deletion (I/D) polymorphism of the ACE gene, a polymorphism contributing much to the variability of ACE level. To elucidate whether the I/D polymorphism was directly involved in the genetic regulation, plasma ACE activity and genotype for the I/D polymorphism were both measured in a sample of 98 healthy nuclear families. The pattern of familial correlations of ACE level was compatible with a zero correlation between spouses and equal parent-offspring and sib-sib correlations (.24 +/- .04). A segregation analysis indicated that this familial resemblance could be entirely explained by the transmission of a codominant major gene. The I/D polymorphism was associated with marked differences of ACE levels, although these differences were less pronounced than those observed in the segregation analysis. After adjustment for the polymorphism effects, the residual heritability (.280 +/- .096) was significant. Finally, a combined segregation and linkage analysis provided evidence that the major-gene effect was due to a variant of the ACE gene, in strong linkage disequilibrium with the I/D polymorphism. The marker allele I appeared always associated with the major-gene allele s characterized by lower ACE levels. The frequency of allele I was .431 +/- .025, and that of major allele s was .557 +/- .041. The major gene had codominant effects equal to 1.3 residual SDs and accounted for 44% of the total variability of ACE level, as compared with 28% for the I/D polymorphism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Jee SH  Song KS  Shim WH  Kim HK  Suh I  Park JY  Won SY  Beaty TH 《Human genetics》2002,111(2):128-135
Elevated levels of homocysteine is a risk factor for coronary artery disease. Polymorphic alleles in the MTHFR genes that cause recessively inherited increased homocysteine level can explain only a small proportion of the observed variation in homocysteine level. To investigate additional genetic influences, we examined environmental, familial, and genetic influences on serum homocysteine levels in 661 family members of 112 probands who underwent elective coronary arteriography. Maximum likelihood methods were used to fit several genetic and non-genetic models of inheritance to these data to determine if an unobserved Mendelian major gene could explain the familial homocysteine distribution. Adjustments for age, lifestyle (smoking and alcohol consumption), serum folate and vitamin B12, and the measured genotype effect of the MTHFR C677T mutation was carried out separately for males and females using multiple regression models for homocysteine, before and after log-transformation prior to this segregation analysis. After excluding the effects of mutations in the MTHFR genes, we found evidence of a major gene acting in a co-dominant manner. Estimated mean homocysteine levels for the three putative genotypes (LL, LH, and HH) were 8.0, 10.1, and 15.9 micro mol/l, respectively, with relative frequencies of 56.8%, 37.2%, and 6%, respectively. Our analysis suggested the presence of a co-dominantly expressed major gene, in addition to the effects of the MTHFR C677T mutation. The results of this study also indicated that multifactorial inheritance was supported more strongly than Mendelian inheritance alone. Our findings may have implications for attempts to identify new homocysteine susceptible genes.  相似文献   

13.
Plasma angiotensin I-converting enzyme (ACE) activity has been measured in a sample of 87 healthy families participating in a study of cardiovascular risk factors. The mean +/- SD levels of plasma ACE were 34.1 +/- 10.7, 30.7 +/- 10.4 and 43.1 +/- 17.2 units/liter in fathers (n = 87), mothers (n = 87) and offspring (n = 169), respectively. Plasma ACE was uncorrelated with age, height, weight, or blood pressure in the parents, but a negative correlation with age was observed in offspring (r = -.32). The age-adjusted familial correlations of plasma ACE were .038, .166, .323 and .303 for spouses, father-offspring, mother-offspring, and siblings, respectively. The results of the genetic analysis suggest that a major gene may affect the interindividual variability of plasma ACE, with different codominant effects in parents and offspring. According to this model, the major gene effect accounts for 4.8, 4.0, and 10.8 units/liter of the overall mean and for 29%, 29% and 75% of the variance of age-adjusted ACE in fathers, mothers, and offspring, respectively. The estimate of the probability of the less frequent allele is .26, and the major gene effect is approximately twice as great in high homozygotes than in heterozygotes and in offspring than in parents. The results of this study demonstrate the occurrence of a familial resemblance of plasma ACE activity in healthy families and suggest that this observation can be explained by the segregation of a major gene.  相似文献   

14.
RICE, TREVA, c. DAVID SJÖSTRÖM, LOUIS PÉRUSSE, D. C. RAO, LARS SJÖSTRÖM, AND CLAUDE BOUCHARD. Segregation analysis of body mass index in a large sample selected for obesity: the Swedish Obese Subjects study. Obes Res. Objective: To investigate a major gene hypothesis for body mass index (BMI) in a large sample of probands (n = 2580, ages 37–57 years) who were selected for obesity (BMI≥34 kg/m2 for males and ≥38 kg/m2 for females), along with their spouses and first-degree relatives (n = 11,204 family members). The probands were recruited as part of an intervention trial assessing whether mortality and morbidity were improved after surgical intervention for obesity as part of the Swedish Obese Subjects (SOS) study. Methods and Procedures: The current analyses were based on BMI measures obtained before intervention. Segregation analysis was carried out using the mixed model implementation in PAP (Pedigree Analysis Package), which allowed for ascertainment correction and for genotype-dependent effects of covariates (sex and age) in both the major gene component and the multifactorial (i. e., polygenic and familial environment) component. Results: Both a major effect and a multifactorial effect were significant. The percentage of the total variance accounted for by the multifactorial effect was 17%-24% (increasing as a function of age), and by the major effect, 8%-34% (decreasing as a function of age). Although tests on the transmission probabilities (τS) were not compatible with Mendelian expectations of 1, 1/2, and 0, the equal τS model was rejected (i. e., the effect is transmitted in families) and the point estimates (0. 96,0. 60, and 0. 17) compared favorably to Mendelian expectations. The major effect was transmitted in a codominant fashion, consistent with a gene-environment interaction. Discussion: These results suggest both multifactorial and major effect etiologies for BMI in these families of extremely obese probands. Before 20 years of age, the major effect dominates the BMI expression, but after age 20, multifactorial effects account for the most variance. Although the major effect is transmitted in these families, the pattern does not appear to be consistent with a simple Mendelian trait. The possibility of additional major loci (i. e., epistasis) and gene by environment interactions may explain these findings.  相似文献   

15.
The familial aggregation of lipids [total cholesterol (CH) and triglyceride (TG)] and lipoproteins [high-density lipoprotein cholesterol (HDL) and low-density lipoprotein cholesterol (LDL)] was investigated in families ascertained through both random and nonrandom probands in the Minnesota Lipid Research Clinic Family Study. Nonrandom proband ascertainment was based on single selection through truncation for hyperlipidemia at an earlier screening. A path model was used to investigate the nature of familial resemblance using appropriate adjustments for ascertainment and to determine whether random and hyperlipidemic samples are heterogeneous with regard to the multifactorial model. The results suggest that parameter estimates are consistent with those from previous studies in which only random families were used and that random and nonrandom samples are homogeneous with regard to the path model for CH and LDL. However, for TG and HDL the random and hyperlipidemic samples are significantly heterogeneous. This heterogeneity would be observed if familial hypertriglyceridemia and/or familial hypoalphalipoproteinemia segregates predominantly in the hyperlipidemic rather than in the random sample, as on might expect.  相似文献   

16.
Segregation analysis of serum uric acid in the NHLBI Family Heart Study   总被引:3,自引:0,他引:3  
Segregation analysis was performed on the serum uric acid measurements from 523 randomly ascertained Caucasian families from the NHLBI Family Heart Study. Gender-specific standardized residuals were used as the phenotypic variable in both familial correlation and segregation analysis. Uric acid residuals were adjusted for age, age2, age3, body mass index (kg/m2), creatinine level, aspirin use (yes/no), total drinks (per week), HOMA insulin resistance index [(glucose * insulin)/22.5], diuretic use (yes/no), and triglyceride level. Sibling correlations (r=0.193) and parent-offspring correlations (r=0.217) were significantly different from zero, but these two familial correlations were not significantly different from one another. After adjustment for covariates, the heritability estimate for serum uric acid was 0.399. Segregation analysis rejected the "no major gene" model but was unable to discriminate between an "environmental" and a "Mendelian major gene" model. These results support the hypothesis that uric acid is a multifactorial trait possibly influenced by more than one major gene, modifying genes, and environmental factors.  相似文献   

17.
The evidence for common familial factors underlying total fat mass (estimated from underwater weighing) and abdominal visceral fat (assessed from CT scan) was examined in families participating in phase 2 of the Québec Family Study (QFS) using a bivariate familial correlation model. Previous QFS investigations suggest that both genetic (major and polygenic) and familial environmental factors influence each phenotype, accounting for between 55% to 71% of the phenotypic variance in fat mass, and between 55% to 72% for abdominal visceral fat The current study suggests that the bivariate familial effect ranges from 29% to 50%. This pattern suggests that there may be common familial determinants for abdominal visceral fat and total fat mass, as well as additional familial factors which are specific to each. The relatively high spouse cross-trait correlations usually suggest that a large percent of the bivariate familial effect may be environmental in origin. However, if mating is not random, then the spouse resemblance may reflect either genetic or environmental causes, depending on the source [i.e., through similar genes or cohabitation (environmental) effects]. Finally, there are significant sex differences in the magnitude of the familial cross-trait correlations involving parents, but not offspring, suggesting complex generation (i.e., age) and sex effects. For example, genes may turn on or off as a function of age and sex, and/or there may be an accumulation over time of effects due to the environment which may vary by sex. Whether the common familial factors are genetic (major and/or polygenic), environmental, or some combination of both, and whether the familial expression depends on sex and/or age warrants further investigation using more complex models.  相似文献   

18.
Sex-linked determinants for IgM?   总被引:1,自引:0,他引:1  
Evidence for a sex-linked determinant of immunoglobulin M levels was sought using correlational and commingling analyses in a sample of 174 randomly selected nuclear families. While mean IgM levels in females were approximately 25% higher than that in males, the pattern of familial correlations did not follow the expectations under a sex-linked model, and there was no commingling in the distribution of IgM levels as expected when a trait is under the influence of a major gene.  相似文献   

19.
OBJECTIVE--To investigate the mode of inheritance of ulcerative colitis and Crohn''s disease by complex segregation analysis. DESIGN--Cross sectional population based survey of familial occurrence of chronic inflammatory bowel disease. SETTING--Population of the Copenhagen county in 1987. SUBJECTS--662 patients in whom inflammatory bowel disease had been diagnosed before 1979, of whom 637 (96%) provided adequate information. Of 504 patients with ulcerative colitis, 54 had 77 relatives with ulcerative colitis and of 133 patients with Crohn''s disease, five had seven relatives with Crohn''s disease. MAIN OUTCOME MEASURES--Patterns of segregation of either disease as assessed by complex segregation analysis performed with the computer program POINTER. RESULTS--The analysis suggested that a major dominant gene with a penetrance of 0.20-0.26 is present in 9-13% of adult patients with ulcerative colitis. The analysis did not allow for other components in the familial aggregation. For Crohn''s disease the best fitting model included a major recessive gene with complete penetrance, for which 7% of the patients are homozygous. However, this model was not significantly different from a multifactorial model. CONCLUSIONS--The segregation pattern indicates that a major dominant gene has a role in ulcerative colitis, and suggests that a major recessive gene has a role in Crohn''s disease.  相似文献   

20.
Plasma levels of two lipoprotein risk factors, high-density lipoprotein-cholesterol (HDL-C) and apolipoprotein A-1 (apo A-1), have been shown to be negatively associated with the risk of developing coronary artery disease, and several reports have examined familial factors in HDL-C and apo A-1 levels. A number of studies suggest that shared genes influence familial resemblance of these lipoprotein levels far more than do shared environments. Possible mechanisms for the inheritance of these two risk factors (HDL-C and apo A-1 plasma levels) are explored using data from 390 individuals in 69 families ascertained through probands undergoing diagnostic cardiac catheterization. Segregation analysis was used to test a series of specific models of inheritance. Evidence for single-locus control of apo A-1 levels, with Mendelian transmission of a dominant allele leading to elevated apo A-1 levels, was seen in these families, although there was additional correlation among sibs present. This locus accounted for 48.6% and 37.2% of the total variation in apo A-1 levels in males and females, respectively. Similar evidence of segregation at a single locus controlling HDL-C levels was not seen in these families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号