首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
cDNA encoding human PACAP precursor was expressed in non-neuroendocrine Chinese hamster ovary cells, CHO-K1, The cells were transfected with expression vector (pTS705) containing the human PACAP cDNA by electroporation. A cell line which produced more than 80 ng/ml of immunoreactive PACAP (ir-PACAP) into the conditioned medium was established. RP-HPLC analysis of culture medium of this established cell line exhibited the presence of two types of PACAP, i.e. PACAP38 and PACAP27. At the same time, it was also revealed that immunoreactive PACAP-related peptide (ir-PRP) was secreted into the cultured medium. The ir-PACAPs were confirmed to ahve biological activities such as induction of cAMP and neurite outgrowth in rat pheochromocytoma PC12h cells.  相似文献   

2.
We have used PC12 cells to examine the effects of factors secreted by Schwann cells that promote cell survival and neurite outgrowth, and hence are likely candidates for promoting neuronal regeneration. RT-PCR showed that primary Schwann cells produced a range of neurotrophins, excluding NT3, but this profile was different from either of two cell lines SCTM41 or PVGSCSV40T, or forskolin-expanded Schwann cells. The effects of Schwann cell conditioned media on neurite outgrowth was tested against a range of factors, and showed clear neuritogenic effects. Of the factors tested, only NGF had a significant response on neuritogenesis. Western blotting for neurofilaments showed that primary Schwann cells induced a strong response close to that of NGF. The Trk tyrosine kinase inhibitor K252a did not block the neuritogenic effects of primary Schwann cells. In contrast, K252a blocked both NGF and the SCTM41 cell effects. Schwann cell conditioned media also enhanced PC12 cell survival. Again, in contrast with NGF or SCTM41 cells, the primary Schwann cell effect was Trk tyrosine kinase independent. The Schwann cell conditioned medium contains a protein factor (greater than 12 kDa and broken down by trypsin treatment) with remarkable thermal stability (unaffected at 95 degrees C for 15 min) and the ability to bind heparin. Our results provide clear evidence that Schwann cells produce factors other than those already known to stimulate a neural phenotype in PC12 cells, and which thus have potential regeneration enhancing effects.  相似文献   

3.
Granulocyte (G)-CSF and granulocyte-macrophage (GM)-CSF enhance phagocyte survival and function and are produced by fibroblasts and endothelial cells after induction by inflammatory mediators such as IL-1. Our ability to detect G-CSF and GM-CSF activity in the conditioned medium of the human astroglial tumor cell line, U87MG, and molecularly clone the cDNA for G-CSF from a U87MG cDNA library raised the possibility that astroglial cells are capable of G-CSF and GM-CSF production within the central nervous system; if so, the production of these CSF by astroglial cells may be inducible by IL-1. We examined the effects of IL-1 alpha and IL-1 beta on the production of G-CSF and GM-CSF by U87MG and U373MG, another astroglial tumor cell line that does not constitutively produce CSF. We demonstrate that both U87MG and U373MG can be induced to produce G-CSF and GM-CSF by exposure to IL-1 alpha and IL-1 beta. This response, measured by accumulation of increased CSF mRNA, is rapid, sensitive and due to the enhanced stability of CSF message following IL-1 exposure. The implications of these findings to the immunopathogenesis of central nervous system infections are discussed.  相似文献   

4.
5.
Two mouse cell lines, 3T3 and L, reported to secrete an NGF-like activity in the culture medium were co-cultured with the pheochromocytoma cell line PC12 which responds to NGF in vitro. In these co-cultures mitomycin-treated L or 3T3 cells were employed at low cell density (1 000 cells/cm2). L cells, but not 3T3, promoted efficiently neurite outgrowth of PC12. The response of the PC12 cells was blocked by an antiserum to male mouse submaxillary gland beta NGF. The NGF secreted by the L cells and immunoprecipitated by this antiserum co-migrated with the submaxillary gland beta NGF monomer in SDS-polyacrylamide gels. Surprisingly the neurite-promoting activity of media conditioned by L or by L-PC12 co-cultures was at most one-tenth of that expected on the basis of the response of PC12 cells in the co-cultures. This was not due to proteolytic degradation of the NGF-like factor or to losses by manipulation of the media. It seems therefore that co-cultures provide conditions which enhance the effect of the factor. Possible mechanisms responsible for this effect are discussed.  相似文献   

6.
Here we have investigated the ability of laminin-1 and specific laminin-1-derived synthetic peptides to stimulate neuronal cell matrix metalloproteinase secretion. Zymographic analysis of conditioned media from laminin-1-treated PC12 and NG108-15 cells revealed a 72-kDa matrix metalloproteinase which was not secreted by untreated cells. Laminin-1 α1 chain-derived synthetic peptides, AASIKVAVSADR (LAM-L) and RKRLQVQLSIRT (AG-73), also stimulated PC12 cell secretion of a 72-kDa matrix metalloproteinase. We further investigated the structural requirements of AG-73 for cell attachment, neurite outgrowth, and matrix metalloproteinase secretion using a series of AG-73 analogs that had single amino acids substituted with alanine. At the substrate levels tested, the AG-73 peptide promoted the adhesion of 67% of the PC12 cells and neurite outgrowth in 71% of the PC12 cells. Substitutions in any one of the amino acids within the central LQVQ sequence resulted in a large reduction in cell attachment whereas substitution in the carboxyl terminal proximal amino acids L, S, and R had little effect on attachment. Alanine substitution of any of the amino terminal proximal LQV amino acids and the carboxyl terminal L, I, and R residues resulted in a 65–91% reduction in neurite outgrowth. These data demonstrate that the sequence requirements for cell attachment and neurite outgrowth were not necessarily coupled but that the sequence requirements for neurite outgrowth and matrix metalloproteinase secretion were identical. We conclude that laminin-1 is able to stimulate neuronal cells to secrete a matrix metalloproteinase. Further, this study identifies the LQVXLXIR laminin-1 α1 globular domain peptide to be capable of stimulating both neurite outgrowth and matrix metalloproteinase secretion.  相似文献   

7.
The guanine nucleotide exchange factor, C3G (RapGEF1), functions in multiple signaling pathways involved in cell adhesion, proliferation, apoptosis and actin reorganization. C3G is regulated by tyrosine phosphorylation on Y504, known to be mediated by c-Abl and Src family kinases. In the present study we explored the possibility of cellular phospho-C3G (pC3G) being a substrate of the intracellular T-cell protein tyrosine phosphatase TC-PTP (PTPN2) using the human neuroblastoma cell line, IMR-32. In vivo and in vitro binding assays demonstrated interaction between C3G and TC-PTP. Interaction is mediated through the Crk-binding region of C3G and C-terminal noncatalytic residues of TC-PTP. C3G interacted better with a substrate trap mutant of TC48 and this complex formation was inhibited by vanadate. Endogenous pC3G colocalized with catalytically inactive mutant TC48 in the Golgi. Expression of TC48 abrogated pervanadate and c-Src induced phosphorylation of C3G without affecting total cellular phospho-tyrosine. Insulin-like growth factor treatment of c-Src expressing cells resulted in dephosphorylation of C3G dependent on the activity of endogenous TC48. TC48 expression inhibited forskolin induced tyrosine phosphorylation of C3G and neurite outgrowth in IMR-32 cells. Our results identify a novel Golgi localized substrate of TC48 and delineate a role for TC48 in dephosphorylation of substrates required during differentiation of human neuroblastoma cells.  相似文献   

8.
Activin acts mitogenically on P19 cells as well as being inhibitory of the differentiation of retinoic acid-treated P19 cells and some neuroblastoma cell lines. Here, we show some lines of evidence that follistatin, an activin-binding protein, is also involved in neural differentiation. Counteracting the activity of activin, addition of follistatin suppresses the anchorage-independent growth of P19 cells in soft agar and stimulates neurite outgrowth of a neuroblastoma cell line, IMR-32 cells. While activin does not seem to be expressed significantly, follistatin is demonstrated in the conditioned medium of these cells. Furthermore, the expression of follistatin in P19 cells is subject to dynamic fluctuations in response to retinoic acid treatment. These neural cells may produce follistatin in a cell stage-specific manner in order to interact with exogenously derived activin.  相似文献   

9.
Fibroblast growth factor 1 (FGF-1) induces neurite outgrowth in PC12 cells. Recently, we have shown that the FGF receptor 1 (FGFR-1) is much more potent than FGFR-3 in induction of neurite outgrowth. To identify the cytoplasmic regions of FGFR-1 that are responsible for the induction of neurite outgrowth in PC12 cells, we took advantage of this difference and prepared receptor chimeras containing different regions of the FGFR-1 introduced into the FGFR-3 protein. The chimeric receptors were introduced into FGF-nonresponsive variant PC12 cells (fnr-PC12 cells), and their ability to mediate FGF-stimulated neurite outgrowth of the cells was assessed. The juxtamembrane (JM) and carboxy-terminal (COOH) regions of FGFR-1 were identified as conferring robust and moderate abilities, respectively, for induction of neurite outgrowth to FGFR-3. Analysis of FGF-stimulated activation of signal transduction revealed that the JM region of FGFR-1 conferred strong and sustained tyrosine phosphorylation of several cellular proteins and activation of MAP kinase. The SNT/FRS2 protein was demonstrated to be one of the cellular substrates preferentially phosphorylated by chimeras containing the JM domain of FGFR-1. SNT/FRS2 links FGF signaling to the MAP kinase pathway. Thus, the ability of FGFR-1 JM domain chimeras to induce strong sustained phosphorylation of this protein would explain the ability of these chimeras to activate MAP kinase and hence neurite outgrowth. The role of the COOH region of FGFR-1 in induction of neurite outgrowth involved the tyrosine residue at amino acid position 764, a site required for phospholipase C gamma binding and activation, whereas the JM region functioned primarily through a non-phosphotyrosine-dependent mechanism. In contrast, assessment of the chimeras in the pre-B lymphoid cell line BaF3 for FGF-1-induced mitogenesis revealed that the JM region did not play a role in this cell type. These data indicate that FGFR signaling can be regulated at the level of intracellular interactions and that signaling pathways for neurite outgrowth and mitogenesis use different regions of the FGFR.  相似文献   

10.
11.
Minocycline, a semi-synthetic second-generation derivative of tetracycline, has been reported to exert neuroprotective effects both in animal models and in clinic trials of neurological diseases. In the present study, we first investigated the protective effects of minocycline on oxygen-glucose deprivation and reoxygenation-induced impairment of neurite outgrowth and its potential mechanism in the neuronal cell line, PC12 cells. We found that minocycline significantly increased cell viability, promoted neurite outgrowth and enhanced the expression of growth-associated protein-43 (GAP-43) in PC12 cells exposed to oxygen-glucose deprivation/reoxygenation injury. In addition, immunoblots revealed that minocycline reversed the overexpression of phosphorylated myosin light chain (MLC) and the suppression of activated extracellular signal-regulated kinase 1/2 (ERK1/2) caused by oxygen-glucose deprivation/reoxygenation injury. Moreover, the minocycline-induced neurite outgrowth was significantly blocked by Calyculin A (1 nM), an inhibitor of myosin light chain phosphatase (MLCP), but not by an ERK1/2 inhibitor (U0126; 10 μM). These findings suggested that minocycline activated the MLCP/MLC signaling pathway in PC12 cells after oxygen-glucose deprivation/reoxygenation injury, which resulted in the promotion of neurite outgrowth.  相似文献   

12.
Panaxynol, a polyacetylene ((3R)-heptadeca-1,9-diene-4,6-diyn-3-ol; syn. falcarinol), was isolated from the lipophilic fractions of Panax notoginseng, a Chinese traditional medicinal plant. In the present study, we reported the neurotrophic effects of panaxynol on PC12D cells and mechanism involved in neurite outgrowth of the cells. Panaxynol could morphologically promote neurite outgrowth in PC12D cells, concentration-dependently reduce cell division and up-regulate molecular marker (MAP1B) expression in PC12D cells. Panaxynol induces the elevation of intracellular cAMP in PC12D cells. The neurite outgrowth in PC12D cells induced by panaxynol could be inhibited by the protein kinase A inhibitor RpcAMPS and by MAP kinase kinase 1/2 inhibitor U0126. These observations reveal that panaxynol could induce the differentiation of PC12D cells in a process similar to but distinct from that of NGF and the panaxynol's effects were via cAMP- and MAP kinase-dependent mechanisms.  相似文献   

13.
Rho-family GTPases regulate cytoskeletal dynamics in various cell types. p21-activated kinase 1 (PAK1) is one of the downstream effectors of Rac and Cdc42 which has been implicated as a mediator of polarized cytoskeletal changes in fibroblasts. We show here that the extension of neurites induced by nerve growth factor (NGF) in the neuronal cell line PC12 is inhibited by dominant-negative Rac2 and Cdc42, indicating that these GTPases are required components of the NGF signaling pathway. While cytoplasmically expressed PAK1 constructs do not cause efficient neurite outgrowth from PC12 cells, targeting of these constructs to the plasma membrane via a C-terminal isoprenylation sequence induced PC12 cells to extend neurites similar to those stimulated by NGF. This effect was independent of PAK1 ser/thr kinase activity but was dependent on structural domains within both the N- and C-terminal portions of the molecule. Using these regions of PAK1 as dominant-negative inhibitors, we were able to effectively inhibit normal neurite outgrowth stimulated by NGF. Taken together with the requirement for Rac and Cdc42 in neurite outgrowth, these data suggest that PAK(s) may be acting downstream of these GTPases in a signaling system which drives polarized outgrowth of the actin cytoskeleton in the developing neurite.  相似文献   

14.
The rat pheochromocytoma cell line PC12 has been widely used as a model to study neuronal differentiation. PC12 cells give rise to neurites in response to basic fibroblast growth factor (bFGF). However, it is unclear whether bFGF promotes neurite outgrowth by inducing RhoA inactivation, and a mechanism for RhoA inactivation in PC12 cells in response to bFGF has not been reported. Lysophosphatidic acid (LPA) treatment and the expression of constitutively active (CA)‐RhoA (RhoA V14) impaired neurite formation in response to bFGF, while Tat‐C3 exoenzyme and the expression of dominant negative (DN)‐RhoA (RhoA N19) stimulated neurite outgrowth. GTP‐bound RhoA levels were reduced in response to bFGF, which suggests that the inactivation of RhoA is essential to neurite outgrowth in response to bFGF. To investigate the mechanism of RhoA inactivation, this study examined the roles of p190RhoGAP and Rap‐dependent RhoGAP (ARAP3). DN‐p190RhoGAP prevented neurite outgrowth, while WT‐p190RhoGAP and Src synergistically stimulated neurite outgrowth; these findings suggest that bFGF promotes the inactivation of RhoA and subsequent neurite outgrowth through p190RhoGAP and Src. Furthermore, DN‐Rap1 and DN‐ARAP3 reduced neurite formation in PC12 cells. These results suggest that RhoA is likely to be inactivated by p190RhoGAP and ARAP3 during neurite outgrowth in response to bFGF. J. Cell. Physiol. 224: 786–794, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Laminin is a potent stimulator of neurite outgrowth in a variety of primary neurons and neuronal cell lines. Here, we investigate the role of nitric oxide in the signaling mechanism of laminin-mediated neurite outgrowth in the PC12 cell line. Within 8 s of exposure to laminin, PC12 cells produce nitric oxide. Peak laminin-induced nitric oxide levels reach 8 nM within 12 s of exposure to laminin and constitutive nitric oxide production is sustained for 1 min. A neurite outgrowth promoting synthetic peptide (AG73), derived from the laminin-1-alpha globular domain, also stimulated nitric oxide release. The nitric oxide synthase inhibitor, 1-NAME, prevents the formation of nitric oxide and here, 1-NAME inhibited both laminin-mediated and AG73-mediated neurite outgrowth by 88 and 95%, respectively. In contrast, C16, a synthetic peptide derived from the laminin-1-gamma chain, is shown here to promote PC12 cell attachment, but not neurite outgrowth. Interestingly, the C16 peptide did not activate nitric oxide release, suggesting that laminin-induced nitric oxide release in PC12 cells is associated only with neurite outgrowth promoting laminin domains and signals. In addition, the data here show that the nitric oxide released by PC12 cells in response to laminin is required as a part of the mechanism of laminin-mediated neurite outgrowth.  相似文献   

16.
The major heparin-binding protein secreted by PC12 cells was purified from conditioned medium. Amino-terminal sequencing of the purified protein identified it as secretogranin I/chromogranin B (SgI/ChmB). The protein showed the same electrophoretic mobility and biochemical characteristics as previously reported for SgI/ChmB and could be purified in high yield using a simple procedure. In vitro experiments demonstrated that SgI/ChmB effectively promoted cell-substratum adhesion of NIH 3T3 and PC12 cells and supported neurite outgrowth in primary hippocampal neurons. Thus, SgI/ChmB may be a new member of the family of heparin-binding extracellular matrix proteins that mediate cell adhesion and support neurite outgrowth.  相似文献   

17.
Abstract: The pheochromocytoma PC12 cell line was used as a model system to characterize the role of the p75 neurotrophin receptor (p75NTR) and tyrosine kinase (Trk) A nerve growth factor (NGF) receptors on amyloid precursor protein (APP) expression and processing. NGF increased in a dose-dependent fashion neurite outgrowth, APP mRNA expression, and APP secretion with maximal effects at concentrations known to saturate TrkA receptor binding. Displacement of NGF binding to p75NTR by addition of an excess of brain-derived neurotrophic factor abolished NGF's effects on neurite outgrowth and APP metabolism, whereas addition of brain-derived neurotrophic factor alone did not induce neurite outgrowth or affect APP mRNA or protein processing. However, treatment of PC12 cells with C2-ceramide, an analogue of ceramide, the endogenous product produced by the activity of p75NTR-activated sphingomyelinase, mimicked the effects of NGF on cell morphology and stimulation of both APP mRNA levels and APP secretion. Specific stimulation of TrkA receptors by receptor cross-linking, on the other hand, selectively stimulated neurite outgrowth and APP secretion but not APP mRNA levels, which were decreased. These findings demonstrate that in PC12 cells expressing p75NTR and TrkA receptors, binding of NGF to the p75NTR is required to mediate NGF effects on cell morphology and APP metabolism. Furthermore, our data are consistent with NGF having specific effects on p75NTR not shared with other neurotrophins. Lastly, we have shown that specific activation of TrkA receptors—in contrast to p75NTR-associated signaling—stimulates neurite outgrowth and increases nonamyloidogenic secretory APP processing without increases in APP mRNA levels.  相似文献   

18.
PC12 cells treated with nerve growth factor (NGF) or infected with Rous sarcoma virus differentiate into sympathetic, neuronlike cells. To compare the differentiation programs induced by NGF and v-src, we have established a PC12 cell line expressing a temperature-sensitive v-src protein. The v-src-expressing PC12 cell line was shown to elaborate neuritic processes in a temperature-inducible manner, indicating that the differentiation process was dependent on the activity of the v-src protein. Further characterization of this cell line, in comparison with NGF-treated PC12 cells, indicated that the events associated with neurite outgrowth induced by these two agents shared features but could be distinguished by others. Both NGF- and v-src-induced neurite outgrowths were reversible. In addition, NGF and v-src could prime PC12 cells for NGF-induced neurite outgrowth, and representative early and late NGF-responsive genes were also induced by v-src. However, unlike NGF-induced neurite growth, v-src-induced neurite outgrowth was not blocked at high cell density. A comparison of phosphotyrosine containing-protein profiles showed that v-src and NGF each increase tyrosine phosphorylation of multiple cellular proteins. There was overlap in substrates; however, both NGF-specific and v-src-specific tyrosine phosphorylations were observed. One protein which was found to be phosphorylated in both the NGF- and v-src-induced PC12 cells was phospholipase C-gamma 1. Taken together, these results suggest that v-src's ability to function as an inducing agent may be a consequence of its ability to mimic critical aspects of the NGF differentiation program and raise the possibility that Src-like tyrosine kinases are involved in mediating some of the events triggered by NGF.  相似文献   

19.
Integrins mediate neuronal process outgrowth on components of the ECM. Integrin alpha subunit-specific antibodies have been used to examine the roles of individual beta 1 integrins in attachment and neurite outgrowth by the neuronal cell line, PC12, in response to laminin and collagen. alpha 1 beta 1 and alpha 3 beta 1 were identified as the major beta 1 integrins expressed by PC12 cells. In functional assays, both alpha 1 beta 1 and alpha 3 beta 1 mediated PC12 cell interactions with laminin, whereas alpha 1 beta 1 alone mediated responses to collagen types I and IV. alpha 1 beta 1 and alpha 3 beta 1 were shown to recognize two different neurite-promoting sites in laminin: alpha 1 beta 1 interacted with the cross-region of laminin present in proteolytic fragments E1-4 and E1; alpha 3 beta 1 recognized a site in the long arm contained in laminin fragment E8. Thus, PC12 cells express two beta 1 integrins, which together function in attachment and neurite outgrowth on laminin and collagen. These integrins are candidates for mediating neurite outgrowth of sympathetic and other neurons in response to these ECM components.  相似文献   

20.
Apoptosis signal-regulating kinase 1 (ASK1) is a ubiquitously expressed mitogen-activated protein kinase kinase kinase that activates the c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase signaling cascades. We report here that expression of constitutively active ASK1 (ASK1DeltaN) induces neurite outgrowth in the rat pheochromocytoma cell line PC12. We found that p38 and to a lesser extent JNK, but not ERK, were activated by the expression of ASK1DeltaN in PC12 cells. ASK1DeltaN-induced neurite outgrowth was strongly inhibited by treatment with the p38 inhibitor SB203580 but not with the MEK inhibitors, suggesting that activation of p38, rather than of ERK, is required for the neurite-inducing activity of ASK1 in PC12 cells. We also observed that ASK1DeltaN induced expression of several neuron-specific proteins and phosphorylation of neurofilament proteins, confirming that PC12 cells differentiated into mature neuronal cells by ASK1. Moreover, ASK1DeltaN-expressing PC12 cells survived in serum-starved condition. ASK1 thus appears to mediate signals leading to both differentiation and survival of PC12 cells. Together with previous reports indicating that ASK1 functions as a pro-apoptotic signaling intermediate, these results suggest that ASK1 has a broad range of biological activities depending on cell types and/or cellular context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号