首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The spatial distribution of biodiversity and related processes is the core of Biogeography. Amazonia is the world's most diverse rainforest and the primary source of diversity to several Neotropical regions. The origins of such diversity continue to be an unresolved question in evolutionary biology. Among many competing hypotheses to explain the evolution of the Amazonian biodiversity, one stands out as the most influential: the refugia hypothesis by Jürgen Haffer. Here, we provide a chronological overview on how the refugia hypothesis evolved over the decades and how the criticism from different fields affected its acceptance. We conclude that the refugia hypothesis alone cannot explain the diversification of the complex Amazonian diversity, and perhaps it was not the most important diversification mechanism. However, the debate provoked by refugia has produced a great amount of knowledge on Amazonian climatic, geological, and evolutionary processes, as well as on species distributions, movements, and history.  相似文献   

2.
    
The Pleistocene geological history of the Hawaiian Islands is becoming well understood. Numerous predictions about the influence of this history on the genetic diversity of Hawaiian organisms have been made, including the idea that changing sea levels would lead to the genetic differentiation of populations isolated on individual volcanoes during high sea stands. Here, we analyse DNA sequence data from two closely related, endemic Hawaiian damselfly species in order to test these predictions, and generate novel insights into the effects of Pleistocene glaciation and climate change on island organisms. Megalagrion xanthomelas and Megalagrion pacificum are currently restricted to five islands, including three islands of the Maui Nui super-island complex (Molokai, Lanai, and Maui) that were connected during periods of Pleistocene glaciation, and Hawaii island, which has never been subdivided. Maui Nui and Hawaii are effectively a controlled, natural experiment on the genetic effects of Pleistocene sea level change. We confirm well-defined morphological species boundaries using data from the nuclear EF-1alpha gene and show that the species are reciprocally monophyletic. We perform phylogeographic analyses of 663 base pairs (bp) of cytochrome oxidase subunit II (COII) gene sequence data from 157 individuals representing 25 populations. Our results point to the importance of Pleistocene land bridges and historical island habitat availability in maintaining inter-island gene flow. We also propose that repeated bottlenecks on Maui Nui caused by sea level change and restricted habitat availability are likely responsible for low genetic diversity there. An island analogue to northern genetic purity and southern diversity is proposed, whereby islands with little suitable habitat exhibit genetic purity while islands with more exhibit genetic diversity.  相似文献   

3.
    
Assessments of spatial and temporal congruency across taxa from genetic data provide insights into the extent to which similar processes structure communities. However, for coastal regions that are affected continuously by cyclical sea‐level changes over the Pleistocene, congruent interspecific response will not only depend upon codistributions, but also on similar dispersal histories among taxa. Here, we use SNPs to test for concordant genetic structure among four codistributed taxa of freshwater fishes (Teleostei: Characidae) along the Brazilian Atlantic coastal drainages. Based on population relationships and hierarchical genetic structure analyses, we identify all taxa share the same geographic structure suggesting the fish utilized common passages in the past to move between river basins. In contrast to this strong spatial concordance, model‐based estimates of divergence times indicate that despite common routes for dispersal, these passages were traversed by each of the taxa at different times resulting in varying degrees of genetic differentiation across barriers with most divergences dating to the Upper Pleistocene, even when accounting for divergence with gene flow. Interestingly, when this temporal dissonance is viewed through the lens of the species‐specific ecologies, it suggests that an ecological sieve influenced whether species dispersed readily, with an ecological generalist showing the highest propensity for historical dispersal among the isolated rivers of the Brazilian coast (i.e., the most recent divergence times and frequent gene flow estimated for barriers). We discuss how our findings, and in particular what the temporal dissonance, despite common geographic passages, suggest about past dispersal structuring coastal communities as a function of ecological and paleo‐landscape sieves.  相似文献   

4.
Owing to their aquatic lifestyle, hippopotamuses are normally believed to have reached islands by swimming. Yet, some studies suggest they cannot swim due to their relatively high density. If so, this raises the question of how hippopotamuses would have reached some islands. Their immigration into the British Isles, Sicily, Malta, Zanzibar and Mafia can be accounted for, because these islands sit on continental shelves and were often linked to the mainland during the Pleistocene glacio‐eustatic sea‐level falls. In contrast, their occurrence in Crete, Cyprus and Madagascar would be more difficult to explain. Available geological evidence does not seem to rule out that the latter islands might have been connected with the nearest mainland areas in very recent times. This study intends to consider possibilities about how hippopotamuses reached islands and to show that more effective collaboration is required among specialists involved with the study of insular evolution, colonization and speciation.  相似文献   

5.
    
A compilation of historical and recent collections and observations of shore fishes yielded 154 recorded species for Trindade and 67 for Martin Vaz. Twelve taxa, mostly small cryptobenthic species with limited dispersal capabilities and low ecological amplitude, are endemic to this insular complex. In several cases, the seamounts of the Vitória‐Trindade Chain appear to have acted as stepping stones between the mainland and islands in periods of low sea level.  相似文献   

6.
    
Aim To investigate areas of endemism in New Caledonia and their relationship with tectonic history. Location New Caledonia, south‐west Pacific. Methods Panbiogeographical analysis. Results Biogeographical patterns within New Caledonia are described and illustrated with reference to eight terranes and ten centres of endemism. The basement terranes make up a centre of endemism for taxa including Amborella, the basal angiosperm. Three of the terranes that accreted to the basement in the Eocene (high‐pressure metamorphic terrane, ultramafic nappe and Loyalty Ridge) have their own endemics. Main conclusions New Caledonia is not simply a fragment of Gondwana but, like New Zealand and New Guinea, is a complex mosaic of allochthonous terranes. The four New Caledonian basement terranes were all formed from island arc‐derived and arc‐associated material (including ophiolites) which accumulated in the pre‐Pacific Ocean, not in Gondwana. They amalgamated and were accreted to Gondwana (eastern Australia) in the Late Jurassic/Early Cretaceous, but in the Late Cretaceous they separated from Australia with the opening of the Tasman Sea and break‐up of Gondwana. An Eocene collision of the basement terranes with an island arc to the north‐east – possibly the Loyalty Ridge – is of special biogeographical interest in connection with New Caledonia–central Pacific affinities. The Loyalty–Three Kings Ridge has had a separate history from that of the Norfolk Ridge/New Caledonia, although both now run in parallel between Vanuatu and New Zealand. The South Loyalty Basin opened between Grande Terre and the Loyalty Ridge in the Cretaceous and attained a width of 750 km. However, it was almost completely destroyed by subduction in the Eocene which brought the Loyalty Ridge and Grande Terre together again, after 30 Myr of separation. The tectonic history is reflected in the strong biogeographical differences between Grande Terre and the Loyalty Islands. Many Loyalty Islands taxa are widespread in the Pacific but do not occur on Grande Terre, and many Grande Terre/Australian groups are not on the Loyalty Islands. The Loyalty Islands are young (2 Myr old) but they are merely the currently emergent parts of the Loyalty Ridge whose ancestor arcs have a history of volcanism dating back to the Cretaceous. Old taxa endemic to the young Loyalty Ridge islands persist over geological time as a dynamic metapopulation surviving in situ on the individually ephemeral islands and atolls found around subduction zones. The current Loyalty Islands, like the Grande Terre terranes, have inherited their biota from previous islands. On Grande Terre, the ultramafic terrane was emplaced on Grande Terre in the Eocene (about the same time as the collision with the island arc). The very diverse endemic flora on the ultramafics may have been inherited by the obducting nappe from prior base‐rich habitat in the region, including the mafic Poya terrane and the limestones typical of arc and intraplate volcanic islands.  相似文献   

7.
8.
    
Aim To assess the correspondence between current avian distributions in the lowlands of northern South America with respect to the hypothesized importance of sea level rise and other events over the past 15 million years on speciation. Location Tropical lowlands of north‐western South America. Methods To establish which bird taxa may have originated in each area of endemism, I examined the ranges of all bird species occurring in the Pacific and the Caribbean lowlands. To determine land and sea distribution during a sea level rise of 100 m in north‐western South America and eastern Central America, I traced the 100 m contour line from the Geoatlas of Georama and the Global 30‐Arc‐Second Elevation Data (GTOPO30) produced by the US Geological Survey. Results During a sea level rise of ~100 m, marine incursions would have occurred from the Caribbean Sea and the Pacific Ocean. Several areas of tropical forest and dry/arid vegetation would have been isolated, currently known as the Darién, Chocó, Nechí, Catatumbo, Tumbesian and Guajiran areas of animal and plant endemism. Main conclusions A large part of the high diversity of forest and nonforest birds and other animals and plants in the Pacific rain forest and the Caribbean woodland likely arose as the result of sea level rises, dispersal and other geological and climatic events.  相似文献   

9.
10.
    
Using complementary metrics to evaluate phylogenetic diversity can facilitate the delimitation of floristic units and conservation priority areas. In this study, we describe the spatial patterns of phylogenetic alpha and beta diversity, phylogenetic endemism, and evolutionary distinctiveness of the hyperdiverse Ecuador Amazon forests and define priority areas for conservation. We established a network of 62 one‐hectare plots in terra firme forests of Ecuadorian Amazon. In these plots, we tagged, collected, and identified every single adult tree with dbh ≥10 cm. These data were combined with a regional community phylogenetic tree to calculate different phylogenetic diversity (PD) metrics in order to create spatial models. We used Loess regression to estimate the spatial variation of taxonomic and phylogenetic beta diversity as well as phylogenetic endemism and evolutionary distinctiveness. We found evidence for the definition of three floristic districts in the Ecuadorian Amazon, supported by both taxonomic and phylogenetic diversity data. Areas with high levels of phylogenetic endemism and evolutionary distinctiveness in Ecuadorian Amazon forests are unprotected. Furthermore, these areas are severely threatened by proposed plans of oil and mining extraction at large scales and should be prioritized in conservation planning for this region.  相似文献   

11.
    
Aim Capuchin monkey species are widely distributed across Central and South America. Morphological studies consistently divide the clade into robust and gracile forms, which show extensive sympatry in the Amazon Basin. We use genetic data to test whether Miocene or Plio‐Pleistocene processes may explain capuchin species’ present distributions, and consider three possible scenarios to explain widespread sympatry. Location The Neotropics, including the Amazon and Atlantic Coastal Forest. Methods We sequenced the 12S ribosomal RNA and cytochrome b genes from capuchin monkey specimens. The majority were sampled from US museum collections and were wild‐caught individuals of known provenance across their distribution. We applied a Bayesian discrete‐states diffusion model, which reconstructed the most probable history of invasion across nine subregions. We used comparative methods to test for phylogeographic association and dispersal rate variation. Results Capuchins contained two well supported monophyletic clades, the morphologically distinct ‘gracile’ and ‘robust’ groups. The time‐tree analysis estimated a late Miocene divergence between Cebus and Sapajus and a subsequent Plio‐Pleistocene diversification within each of the two clades. Bayesian analysis of phylogeographic diffusion history indicated that the current wide‐ranging sympatry of Cebus and Sapajus across much of the Amazon Basin was the result of a single explosive late Pleistocene invasion of Sapajus from the Atlantic Forest into the Amazon, where Sapajus is now sympatric with gracile capuchins across much of their range. Main conclusions The biogeographic history of capuchins suggests late Miocene geographic isolation of the gracile and robust forms. Each form diversified independently, but during the Pleistocene, the robust Sapajus expanded its range from the Atlantic Forest to the Amazon, where it has now encroached substantially upon what was previously the exclusive range of gracile Cebus. The genus Cebus, as currently recognized, should be split into two genera to reflect the Miocene divergence and two subsequent independent Pliocene radiations: Cebus from the Amazon and Sapajus from the Atlantic Forest.  相似文献   

12.
It is widely accepted that sea level changes intermittently inundated the Sunda Shelf throughout the Pleistocene, separating Java, Sumatra and Borneo from the Malay Peninsula and from each other. On this basis, the dynamics of the biodiversity hotspot of Sundaland is consistently regarded as solely contingent on glacial sea level oscillations, with interglacial highstands creating intermittent dispersal barriers between disjunct landmasses. However, recent findings on the geomorphology of the currently submerged Sunda shelf suggest that it subsided during the Pleistocene and that, over the Late Pliocene and Quaternary, is was never submerged prior to Marine Isotope Stage 11 (MIS 11, 400 ka). This would have enabled the dispersal of terrestrial organisms regardless of sea level variations until 400 ka and hampered movements thereafter, at least during interglacial periods. Existing phylogeographic data for terrestrial organisms conform to this scenario: available divergence time estimates reveal an 8- to 9-fold increase in the rate of vicariance between landmasses of Sundaland after 400 ka, corresponding to the onset of episodic flooding of the Sunda shelf. These results highlight how reconsidering the paleogeographic setting of Sundaland challenges understanding the mechanisms generating Southeast Asian biodiversity.  相似文献   

13.
    
A recent molecular clock analysis concluded that Gondwanan vicariance and out-of-India dispersal best explained the distribution of Crypteroniaceae and its allies (Conti et al. 2002). A reanalysis of their data using a different molecular dating technique and calibration point is congruent with an alternative hypothesis, namely dispersal between India, Africa, and South America long after the initial break-up of Gondwana.  相似文献   

14.
Biogeography of Southeast Asia and the West Pacific   总被引:1,自引:1,他引:0  
The biogeography of Southeast Asia and the West Pacific is complicated by the fact that these are regions on the border of two palaeocontinents that have been separated for a considerable period of time. Thus, apart from any patterns of vicariance, two general patterns relating to dispersal can be expected: a pattern of Southeast Asian elements, perhaps of Laurasian origin, expanding into Australian areas, and a reverse pattern for Australian elements, perhaps of Gondwanan origin. On top of this, both Australian and Southeast Asian elements occur in the Pacific. They dispersed there as the Pacific plate moved westward, bringing the different islands within reach of Southeast Asia and Australia. In order to reconstruct the biotic history of these areas, two large data sets consisting of both plants and animals were generated, one for each pattern, which were analysed using cladistic methods. The general patterns that emerged were weakly supported and do not allow general conclusions.  相似文献   

15.
16.
The present study uses published phylogeographical studies to test the Carnaval–Moritz (CM) model of forest dynamics in the Atlantic forest of Brazil. The model predicts that a large forested area in the north–central region of this biome has remained stable during the last glacial maximum, and only relicts in its current southernmost distributions. All available sequences for phylogeographical studies on vertebrates on the Atlantic forest were obtained from GenBank. All datasets consisted of mitochondrial sequences and were submitted to the same analyses, including time of divergence and migration rates between phylogeographical lineages, as well as historical demography analyses, including neutrality tests and Ne estimates. The species studied showed different degrees of phylogeographical structure. Two contact zones are defined: one very heterogeneous in south‐east Brazil that was largely congruent with the CM model and one around the Doce river further north. Population genetics analyses showed a smaller effective number on southern population, and most of these southern populations showed evidence for recent demographic expansion. These features are also in agreement with the CM model. Additionally, divergence/expansion events dated back to the Pleistocene epoch in all but one organism. According to hierarchical approximate Bayesian computation analysis, most of the data can be attributed to a single event. The results highlight the need for more finescale studies in the Atlantic forest. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 499–509.  相似文献   

17.
    
Aim Dispersal barriers between areas within some regions have appeared and disappeared throughout evolutionary time. Here we describe the distributional patterns displayed by three taxa living in such kind of regions. These patterns can be better explained considering a reticulated rather than a hierarchically branched palaeogeography. Location Western Mediterranean. Methods The taxa studied are Misolampus (Coleoptera, Tenebrionidae), Tentyria (Coleoptera, Tenebrionidae) and Thorectes (Coleoptera, Geotrupidae). All them are flightless and show a high degree of endemicity. The individual pattern of area relationships was determined separately for each genus by Brooks Parsimony Analysis (BPA). A theoretical general area cladogram was constructed based on the palaeogeographical history of the region. Finally, the general area cladogram is reconciled with the individual ones. Results The ancestor of Misolampus probably was North African. Land dispersal toward the Iberian Peninsula is proposed. Speciation within Iberia is related to specific vicariance events, and the presence of insular (Balearic Islands) populations is explained by sea‐surface or, more probably, human‐mediated dispersal. The ancestor of Tentyria was Iberic. The proposed hypothesis to explain the current species distribution mainly relies on the occurrence of specific vicariance events. However, the occurrence of some sea‐surface dispersal event is not discarded. Almost all possible vicariance events can be recognized in the first clade of the Thorectes genus. There is evidence for dispersal between Africa and Europe at different dates and in both directions. In spite of some uncertainties, the appearance of the second Thorectes clade can also be explained by the occurrence of specific historical events. An ancient dispersal toward the eastern Mediterranean and several dispersal events during the Messinian seem likely. Main conclusions The same historical events have specific outcomes in every tree (even in every branch within a tree) depending on the ability for dispersal and speciation of each taxon. Connection‐disjunction cycles of dispersal barriers have acted as diversity producers.  相似文献   

18.
Neotropical seasonally dry forests and Quaternary vegetation changes   总被引:6,自引:0,他引:6  
Seasonally dry tropical forests have been largely ignored in discussions of vegetation changes during the Quaternary. We distinguish dry forests, which are essentially tree‐dominated ecosystems, from open savannas that have a xeromorphic fire‐tolerant, grass layer and grow on dystrophic, acid soils. Seasonally dry tropical forests grow on fertile soils, usually have a closed canopy, have woody floras dominated by the Leguminosae and Bignoniaceae and a sparse ground flora with few grasses. They occur in disjunct areas throughout the Neotropics. The Chaco forests of central South America experience regular annual frosts, and are considered a subtropical extension of temperate vegetation formations. At least 104 plant species from a wide range of families are each found in two or more of the isolated areas of seasonally dry tropical forest scattered across the Neotropics, and these repeated patterns of distribution suggest a more widespread expanse of this vegetation, presumably in drier and cooler periods of the Pleistocene. We propose a new vegetation model for some areas of the Ice‐Age Amazon: a type of seasonally dry tropical forest, with rain forest and montane taxa largely confined to gallery forest. This model is consistent with the distributions of contemporary seasonally dry tropical forest species in Amazonia and existing palynological data. The hypothesis of vicariance of a wider historical area of seasonally dry tropical forests could be tested using a cladistic biogeographic approach focusing on plant genera that have species showing high levels of endemicity in the different areas of these forests.  相似文献   

19.
    
Studies of South American biodiversity have identified several areas of endemism that may have enhanced historical diversification of South American organisms. Hypotheses concerning the derivation of birds in the Chocó area of endemism in northwestern South America were evaluated using protein electrophoretic data from 14 taxonomically diverse species groups of birds. Nine of these groups demonstrated that the Chocó area of endemism has a closer historical relationship to Central America than to Amazonia, a result that is consistent with phytogeographic evidence. Within species groups, genetic distances between cis-Andean (east of the Andes) and trans-Andean (west of the Andes) taxa are, on average, roughly twice that between Chocó and Central American taxa. The genetic data are consistent with the hypotheses that the divergence of most cis-Andean and trans-Andean taxa was the result of either the Andean uplift fragmenting a once continuous Amazonian-Pacific population (Andean Uplift Hypothesis), the isolation of the two faunas in forest refugia on opposite sides of the Andes during arid climates (Forest Refugia Hypothesis), or dispersal of Amazonian forms directly across the Andes into the trans-Andean region (Across-Andes Dispersal Hypothesis). Disentangling these hypotheses is difficult due to the complexity of the Andean uplift and to the scant geologic and paleoclimatic information that elucidates diversification events in northwestern South America. Regarding the divergence of cis- and trans-Andean taxa, the genetic, geologic, and paleoclimatic data allow weak rejection of the Andean Uplift Hypothesis and weak support for the Forest Refugia and Andean Dispersal Hypotheses. The subsequent diversification of Chocó and Central American taxa was the result of Pleistocene forest refugia, marine transgressions, or parapatric speciation.  相似文献   

20.
    
Madagascar is home to many endemic plant and animal species owing to its ancient isolation from other landmasses. This unique fauna includes several lineages of termites, a group of insects known for their key role in organic matter decomposition in many terrestrial ecosystems. How and when termites colonised Madagascar remains unknown. In this study, we used 601 mitochondrial genomes, 93 of which were generated from Malagasy samples, to infer the global historical biogeography of Neoisoptera, a lineage containing more than 80% of described termite species. Our results indicate that Neoisoptera colonised Madagascar between 7 and 10 times independently during the Miocene, between 8.4 and 16.6 Ma (95% HPD: 6.1–19.9 Ma). This timing matches that of the colonization of Australia by Neoisoptera. Furthermore, the taxonomic composition of the Neoisopteran fauna of Madagascar and Australia are strikingly similar, with Madagascar harbouring an additional two lineages absent from Australia. Therefore, akin to Australia, Neoisoptera colonised Madagascar during the global expansion of grasslands, possibly helped by the ecological opportunities arising from the spread of this new biome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号