首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recently developed continuous Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) Process has been reduced to a fully equivalent semicontinuous setup with only three chromatographic columns and three gradient pump modules. Actually the 3-column MCSGP unit can even achieve better performance than the original 6-column process due to an additional degree of freedom, that is a different switching time for the "batch lane" and the "interconnected lane." Experimental results for the 3-column MCSGP unit of the purification of an industrial multicomponent peptide mixture containing 46% of Calcitonin on a reversed phase resin are compared with model simulations. It is concluded, that the model is well suited to predict the system behavior and therefore to design its optimal operating conditions.  相似文献   

2.
The semicontinuous twin‐column multicolumn countercurrent solvent gradient purification (MCSGP) process improves the trade‐off between purity and yield encountered in traditional batch chromatography, while its complexity, in terms of hardware requirements and process design, is reduced in comparison to process variants using more columns. In this study, the MCSGP process is experimentally characterized, specifically with respect to its unique degrees of freedom, i.e., the four switching times, which alternate the columns between interconnected and batch states. By means of isolation of the main charge isoform of an antibody, it is shown that purity is determined by the selection of the product collection window with negligible influence from the recycle phases. In addition, the amount of weak and strong impurities can be specifically attributed to the start and end of the collection, respectively. Due to higher abundance of weakly adsorbing impurities, the start of product collection influences productivity and yield more than the other switching times. Furthermore, most of the encountered tendencies scale between different loadings. The found trends can be rationalized from the corresponding batch chromatogram and therefore used during process design to obtain desirable process performances without extensive trial‐and‐error experimentation or complete model development and calibration.  相似文献   

3.
Intensified processing and end‐to‐end integrated continuous manufacturing are increasingly being considered in bioprocessing as an alternative to the current batch‐based technologies. Similar approaches can also be used at later stages of the production chain, such as in the post‐translational modifications that are often considered for therapeutic proteins. In this work, a process to intensify the enzymatic digestion of immunoglobulin G (IgG) and the purification of the resulting Fab fragment is developed. The process consists of the integration of a continuous packed‐bed reactor into a multicolumn chromatographic process. The integration is realized through the development of a novel multicolumn countercurrent solvent gradient purification (MCSGP) process, which, by adding a third column to the classical two‐column MCSGP process, allows for continuous loading and then straight‐through processing of the mixture leaving the reactor.  相似文献   

4.
Biomolecules are often purified via solvent gradient batch chromatography. Typically suitable smooth linear solvent gradients are applied to obtain the separation between the desired component and hundreds of impurities. The desired product is usually intermediate between weakly and strongly adsorbing impurities, and therefore a central cut is required to get the desired pure product. The stationary phases used for preparative and industrial separations have a low efficiency due to strong axial dispersion and strong mass transfer resistances. Therefore a satisfactory purification often cannot be achieved in a single chromatographic step. For large scale productions and for very valuable molecules, countercurrent operation such as the well known SMB process, is needed in order to increase separation efficiency, yield and productivity. In this work a novel multicolumn solvent gradient purification process (MCSGP-process) is introduced, which combines two chromatographic separation techniques, which are solvent gradient batch and continuous countercurrent SMB. The process consists of several chromatographic columns, which are switched in position opposite to the flow direction. Most of the columns are equipped with a gradient pump to adjust the modifier concentration at the column inlet. Some columns are interconnected, so that non pure product streams are internally, countercurrently recycled. Other columns are short circuited and operate in batch mode. As a working example the purification of an industrial stream containing 46% of the hormone Calcitonin is considered. It is found that for the required purity the MCSGP unit achieves a yield close to 100% compared to a maximum value of a single column batch chromatography of 66%.  相似文献   

5.
Multicolumn countercurrent solvent gradient purification (MCSGP) is a continuous chromatographic process developed in recent years (Aumann and Morbidelli, 2007a; Aumann et al., 2007) that is particularly suited for applications in the field of bioseparations. Like batch chromatography, MCSGP is suitable for three-fraction chromatographic separations and able to perform solvent gradients but it is superior in terms of solvent consumption, yield, purity, and productivity due to the countercurrent movement of the liquid and the solid phases. In this work, the MCSGP process is applied to the separation of three monoclonal antibody variants on a conventional preparative cation exchange resin. The experimental process performance was compared to simulations based on a lumped kinetic model. Yield and purity values of the target variant of 93%, respectively were obtained experimentally. The batch reference process was clearly outperformed by the MCSGP process.  相似文献   

6.
A two‐step chromatography process for monoclonal antibody (mAb) purification from clarified cell culture supernatant (cCCS) was developed using cation exchange Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) as a capture step. After an initial characterization of the cell culture supernatant the capture step was designed from a batch gradient elution chromatogram. A variety of chromatographic materials was screened for polishing of the MCSGP‐captured material in batch mode. Using multi‐modal anion exchange in bind‐elute mode, mAb was produced consistently within the purity specification. The benchmark was a state‐of‐the‐art 3‐step chromatographic process based on protein A, anion and cation exchange stationary phases. The performance of the developed 2‐step process was compared to this process in terms of purity, yield, productivity and buffer consumption. Finally, the potential of the MCSGP process was investigated by comparing its performance to that of a classical batch process that used the same stationary phase. Biotechnol. Bioeng. 2010;107: 974–984. © 2010 Wiley Periodicals, Inc.  相似文献   

7.
Xie Y  Mun S  Kim J  Wang NH 《Biotechnology progress》2002,18(6):1332-1344
A tandem simulated moving bed (SMB) process for insulin purification has been proposed and validated experimentally. The mixture to be separated consists of insulin, high molecular weight proteins, and zinc chloride. A systematic approach based on the standing wave design, rate model simulations, and experiments was used to develop this multicomponent separation process. The standing wave design was applied to specify the SMB operating conditions of a lab-scale unit with 10 columns. The design was validated with rate model simulations prior to experiments. The experimental results show 99.9% purity and 99% yield, which closely agree with the model predictions and the standing wave design targets. The agreement proves that the standing wave design can ensure high purity and high yield for the tandem SMB process. Compared to a conventional batch SEC process, the tandem SMB has 10% higher yield, 400% higher throughput, and 72% lower eluant consumption. In contrast, a design that ignores the effects of mass transfer and nonideal flow cannot meet the purity requirement and gives less than 96% yield.  相似文献   

8.
The charged monoclonal antibody (mAb) variants of the commercially available therapeutics Avastin®, Herceptin® and Erbitux® were separated by ion‐exchange gradient chromatography in batch and continuous countercurrent mode (MCSGP process). Different stationary phases, buffer conditions and two MCSGP configurations were used in order to demonstrate the broad applicability of MCSGP in the field of charged protein variant separation. Batch chromatography and MCSGP were compared with respect to yield, purity, and productivity. In the case of Herceptin®, also the biological activity of the product stream was taken into account as performance indicator. The robustness of the MCSGP process against feed composition variations was confirmed experimentally and by model simulations. Biotechnol. Bioeng. 2010;107:652–662. © 2010 Wiley Periodicals, Inc.  相似文献   

9.
While bulk crystallization from impure solutions is used industrially as a purification step for a wide variety of materials, it is a technique that has rarely been used for proteins. Proteins have a reputation for being difficult to crystallize and high purity of the initial crystallization solution is considered paramount for success in the crystallization. Although little is written on the purifying capability of protein crystallization or of the effect of impurities on the various aspects of the crystallization process, recent published reports show that crystallization shows promise and feasibility as a purification technique for proteins. To further examine the issue of purity in macromolecule crystallization, this study investigates the effect of the protein impurities, avidin, ovalbumin, and conalbumin at concentrations up to 50%, on the solubility, crystal face growth rates, and crystal purity of the protein lysozyme. Solubility was measured in batch experiments while a computer controlled video microscope system was used to measure the ?110? and ?101? lysozyme crystal face growth rates. While little effect was observed on solubility and high crystal purity was obtained (>99.99%), the effect of the impurities on the face growth rates varied from no effect to a significant face specific effect leading to growth cessation, a phenomenon that is frequently observed in protein crystal growth. The results shed interesting light on the effect of protein impurities on protein crystal growth and strengthen the feasibility of using crystallization as a unit operation for protein purification.  相似文献   

10.
The realization of an end‐to‐end integrated continuous lab‐scale process for monoclonal antibody manufacturing is described. For this, a continuous cultivation with filter‐based cell‐retention, a continuous two column capture process, a virus inactivation step, a semi‐continuous polishing step (twin‐column MCSGP), and a batch‐wise flow‐through polishing step were integrated and operated together. In each unit, the implementation of internal recycle loops allows to improve the performance: (a) in the bioreactor, to simultaneously increase the cell density and volumetric productivity, (b) in the capture process, to achieve improved capacity utilization at high productivity and yield, and (c) in the MCSGP process, to overcome the purity‐yield trade‐off of classical batch‐wise bind‐elute polishing steps. Furthermore, the design principles, which allow the direct connection of these steps, some at steady state and some at cyclic steady state, as well as straight‐through processing, are discussed. The setup was operated for the continuous production of a commercial monoclonal antibody, resulting in stable operation and uniform product quality over the 17 cycles of the end‐to‐end integration. The steady‐state operation was fully characterized by analyzing at the outlet of each unit at steady state the product titer as well as the process (HCP, DNA, leached Protein A) and product (aggregates, fragments) related impurities. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1303–1313, 2017  相似文献   

11.
Current industrial trends encourage the development of sustainable, environmentally friendly processes with minimal energy and material consumption. In particular, the increasing market demand in biopharmaceutical industry and the tight regulations in product quality necessitate efficient operating procedures that guarantee products of high purity. In this direction, process intensification via continuous operation paves the way for the development of novel, eco‐friendly processes, characterized by higher productivity and lower production costs. This work focuses on the development of advanced control strategies for (i) a cell culture system in a bioreactor and (ii) a semicontinuous purification process. More specifically, we consider a fed‐batch culture of GS‐NS0 cells and the semicontinuous Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) for the purification process. The controllers are designed following the PAROC framework/software platform and their capabilities are assessed in silico, against the process models. It is demonstrated that the proposed controllers efficiently manage to increase the system productivity, returning strategies that can lead to continuous, stable process operation. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:966–988, 2017  相似文献   

12.
Continuous bioprocessing holds the potential to improve product consistency, accelerate productivity, and lower cost of production. However, switching a bioprocess from traditional batch to continuous mode requires surmounting business and regulatory challenges. A key regulatory requirement for all biopharmaceuticals is virus safety, which is assured through a combination of testing and virus clearance through purification unit operations. For continuous processing, unit operations such as capture chromatography have aspects that could be impacted by a change to continuous multicolumn operation, for example, do they clear viruses as well as a traditional batch single column. In this study we evaluate how modifying chromatographic parameters including the linear velocity and resin capacity utilization could impact virus clearance in the context of moving from a single column to multicolumn operation. A Design of Experiment (DoE) approach was taken with two model monoclonal antibodies (mAbs) and two bacteriophages used as mammalian virus surrogates. The DoE enabled the identification of best and worst-case scenario for virus clearance overall. Using these best and worst-case conditions, virus clearance was tested in single column and multicolumn modes and found to be similar as measured by Log Reduction Values (LRV). The parameters identified as impactful for viral clearance in single column mode were predictive of multicolumn modes. Thus, these results support the hypothesis that the viral clearance capabilities of a multicolumn continuous Protein A system may be evaluated using an appropriately scaled-down single mode column and equipment.  相似文献   

13.
Residual host cell protein impurities (HCPs) are a key component of biopharmaceutical process related impurities. These impurities need to be effectively cleared through chromatographic steps in the downstream purification process to produce safe and efficacious protein biopharmaceuticals. A variety of strategies to demonstrate robust host cell protein clearance using scale-down studies are highlighted and compared. A common strategy is the "spiking" approach, which is widely employed in clearance studies for well-defined impurities. For HCPs this approach involves spiking cell culture harvest, which is rich in host cell proteins, into the load material for all chromatographic steps to assess their clearance ability. However, for studying HCP clearance, this approach suffers from the significant disadvantage that the vast majority of host cell protein impurities in a cell culture harvest sample are not relevant for a chromatographic step that is downstream of the capture step in the process. Two alternative strategies are presented here to study HCP clearance such that relevance of those species for a given chromatographic step is taken into consideration. These include a "bypass" strategy, which assumes that some of the load material for a chromatographic step bypasses that step and makes it into the load for the subsequent step. The second is a "worst-case" strategy, which utilizes information obtained from process characterization studies. This involves operating steps at a combination of their operating parameters within operating ranges that yield the poorest clearance of HCPs over that step. The eluate from the worst case run is carried forward to the next chromatographic step to assess its ability to clear HCPs. Both the bypass and worst-case approaches offer significant advantages over the spiking approach with respect to process relevance of the HCP impurity species being studied. A combination of these small-scale validation approaches with large-scale HCP clearance data from clinical manufacturing and manufacturing consistency runs is used to demonstrate robust HCP clearance for the downstream purification process of an Fc fusion protein. The demonstration of robust HCP clearance through this comprehensive strategy can potentially be used to eliminate the need for routine analytical testing or for establishing acceptance criteria for these impurities as well as to demonstrate robust operation of the entire downstream purification process.  相似文献   

14.
There has been an increasing interest in the development of systematic methods for the synthesis of purification steps for biotechnological products, which are often the most difficult and costly stages in a biochemical process. Chromatographic processes are extensively used in the purification of multicomponent biotechnological systems. One of the main challenges in the synthesis of purification processes is the appropriate selection and sequencing of chromatographic steps that are capable of producing the desired product at an acceptable cost and quality. This paper describes mathematical models and solution strategies based on mixed integer linear programming (MILP) for the synthesis of multistep purification processes. First, an optimization model is proposed that uses physicochemical data on a protein mixture, which contains the desired product, to select a sequence of operations with the minimum number of steps from a set of candidate chromatographic techniques that must achieve a specified purity level. Since several sequences that have the minimum number of steps may satisfy the purity level, it is possible to obtain the one that maximizes final purity. Then, a second model that may use the total number of steps obtained in the first model generates a solution with the maximum purity of the product. Whenever the sequence does not affect the final purity or more generally does not impact the objective function, alternative models that are of smaller size are developed for the optimal selection of steps. The models are tested in several examples, containing up to 13 contaminants and a set of 22 candidate high-resolution steps, generating sequences of six operations, and are compared to the current synthesis approaches.  相似文献   

15.
介绍了一种成本低、步骤少、简单易行的质粒纯化制检工艺。该工艺选择优势产生超螺旋质粒的大肠杆菌菌株以无蛋白质培养基进行发酵罐培养,采用碱裂解法,对质粒制备过程中所用的层析吸附材料、核酸结合溶液、去除内毒素等杂质的方法和浓缩等步骤进行了实用性改进,并建立了相应的检定方法,所得质粒的纯度达到临床级要求。  相似文献   

16.
Umesh Ingle  Arvind Lali 《Chirality》2020,32(11):1324-1335
Development of preparative methods for the isolation of chiral molecules has been considered challenging by conventional unit operations due to their identical physical and chemical properties. This has evolved chiral stationary phases for the separation of chiral components using chromatography technique. However, separation method using chiral adsorbents requires high pressure, are expensive, and have low productivity. Generation of bulk quantities purified nebivolols using the available high pressure chiral separation methods is impractical and operating cost-intensive. Thus, there is a need to develop economical methods using nonchiral adsorbents for the purification of nebivolols or similar active ingredients. The present work demonstrates a unique and scalable tandem two-column method for the separation of isomers of nebivolol using inexpensive reverse phase adsorbents. The first column of the scheme causes removal of charged and nonisomeric impurities whereas tandem operation of second column increases resolution of d-nebivolol and l-nebivolol. The maximization of separation due to tandem operation of second column causes enhancement of the throughput of the process. The developed preparative process produces >98% purity of both d-nebivolol and l-nebivolol with overall loading capacity of 56 g (L of adsorbent)−1 and productivity of 20 g L−1 day−1.  相似文献   

17.
The polypeptide hormone amylin forms amyloid deposits in Type 2 diabetes mellitus and a 10-residue fragment of amylin (amylin(20-29)) is commonly used as a model system to study this process. Studies of amylin(20-29) and several variant peptides revealed that low levels of deamidation can have a significant effect on the secondary structure and aggregation behavior of these molecules. Results obtained with a variant of amylin(20-29), which has the primary sequence SNNFPAILSS, are highlighted. This peptide is particularly interesting from a technical standpoint. In the absence of impurities the peptide does not spontaneously aggregate and is not amyloidogenic. This peptide can spontaneously deamidate, and the presence of less than 5% of deamidation impurities leads to the formation of aggregates that have the hallmarks of amyloid. In addition, small amounts of deamidated material can induce amyloid formation by the purified peptide. These results have fundamental implications for the definition of an amyloidogenic sequence and for the standards of purity of peptides and proteins used for studies of amyloid formation.  相似文献   

18.
中试规模纯化海洋芽孢杆菌源脂肽类化合物   总被引:1,自引:0,他引:1  
本次研究旨在建立经济可行的海洋芽孢杆菌源脂肽类化合物的中试规模纯化工艺。对包括酸化沉淀、甲醇浸提、溶剂沉淀、盐析、萃取、硅胶柱层析和HZ806大孔树脂吸附工艺在内的可放大的成熟单元工艺进行反复试验,考察脂肽类化合物表面活性对单元工艺的影响。严格遵循以高收率为前提循序渐进逐步减少杂质的原则,组合上述单元工艺对目标产物进行提取和纯化,并最终获得高纯度脂肽样品。新工艺可从1 t海洋芽孢杆菌Bacillus marinus B-9987的发酵液中,以百克量级的规模制备87.51%–100%纯度的脂肽类化合物样品,收率81.73%。本研究首次实现了高纯度的海洋芽孢杆菌源脂肽类化合物的百克量级制备;允许发酵生产阶段使用天然培养基,缓解了脂肽中游发酵生产和下游大规模纯化之间的矛盾;且各单元工艺规避了脂肽类化合物水溶液的乳化起泡和不经济的大体积水溶液蒸发浓缩。新工艺实用可行,经济合理。  相似文献   

19.
疏水层析结合冷乙醇沉淀纯化人血清白蛋白   总被引:5,自引:0,他引:5  
将层析技术与冷乙醇工艺相结合用于人血清白蛋白的纯化 ,对各过程所采用的层析介质及层析条件进行了探索 ,得到了一条从人血浆中制备血清白蛋白的新路线 :将一步冷乙醇沉淀后的血浆上清进行脱盐除乙醇 ,用阳离子交换介质CMSepharoseFF以透过式层析的模式吸附非白蛋白组分 ,最后选用ButylSepharoseFF一步疏水层析后所得样品经SDS-PAGE银染显示一条单带 ,分析其纯度大于 99% ,计算工艺收率为 81.2%。与传统冷乙醇工艺相比较 ,该工艺最终样品纯度更高 ,且层析可以在常温下操作 ,易实现自动化控制.  相似文献   

20.
Viral safety is a predominant concern for monoclonal antibodies (mAbs) and other recombinant proteins (RPs) with pharmaceutical applications. Certain commercial purification modules, such as nanofiltration and low-pH inactivation, have been observed to reliably clear greater than 4 log(10) of large enveloped viruses, including endogenous retrovirus. The concept of "bracketed generic clearance" has been proposed for these steps if it could be prospectively demonstrated that viral log(10) reduction value (LRV) is not impacted by operating parameters that can vary, within a reasonable range, between commercial processes. In the case of low-pH inactivation, a common step in mAb purification processes employed after protein A affinity chromatography, these parameters would include pH, time and temperature of incubation, the content of salts, protein concentration, aggregates, impurities, model protein pI, and buffer composition. In this report, we define bracketed generic clearance conditions, using a prospectively defined bracket/matrix approach, where low-pH inactivation consistently achieves >or=4.6 log(10) clearance of xenotropic murine leukemia virus (X-MLV), a model for rodent endogenous retrovirus. The mechanism of retrovirus inactivation by low-pH treatment was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号