首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemoresistance and increased expression of TrkB and brain-derived neurotrophic factor (BDNF) are biomarkers of poor prognosis in tumors from patients with neuroblastoma (NB). Previously, we found BDNF activation of TrkB through PI3K/Akt protects NB from etoposide/cisplatin-induced cell death. In this study, the role of Bim, a proapoptotic protein, was investigated. Bim was involved in paclitaxel but not etoposide or cisplatin-induced cell death in NB cells. Pharmacological and genetic studies showed that BDNF-induced decreases in Bim were regulated by MAPK and not PI3K/Akt pathway. Both MAPK and PI3K pathways were involved in BDNF protection of NB cells from paclitaxel-induced cell death, while PI3K predominantly mediated BDNF protection of NB cells from etoposide or cisplatin-induced cell death. These data indicate that different chemotherapeutic drugs induce distinct death pathways and growth factors utilize different signal transduction pathways to modulate the effects of chemotherapy on cells.  相似文献   

2.
The efficacy of chemotherapeutic agents on tumor cells has been shown to be modulated by tumor suppressor gene p53 and its target genes such as Bcl-2 family members (Bax, Noxa, and PUMA). However, various chemotherapeutic agents can induce cell death in tumor cells that do not express the functional p53, suggesting that some chemotherapeutic agents may induce cell death in a p53-independent pathway. Here we showed that etoposide can induce the similar degree of cell death in p53-deficient HCT 116 cells, whereas 5'-FU-mediated cell death is strongly dependent on the existence of functional p53 in HCT 116 cells. Further, we provide the evidence that etoposide can induce the cytochrome c release from isolated mitochondria, and etoposide-induced cytochrome c release is not accompanied with the large amplitude swelling of mitochondria. These data suggest that etoposide can directly induce the mitochondrial dysfunction irrespective of p53 status, and it may, at least in part, account for the p53-independent pathway in cell death induced by chemotherapeutic agents.  相似文献   

3.
《Free radical research》2013,47(8):864-870
Abstract

Actinomycin D and etoposide induce the production of reactive oxygen species, which play an important causative role in apoptotic cell death. Sensitive to apoptosis gene (SAG) protein, a redox inducible zinc RING finger protein that protects mammalian cells from apoptosis by redox reagents, is a metal chelator and a potential reactive oxygen species scavenger. The present report show that knockdown of SAG expression in PC3 cells greatly enhances apoptosis induced by actinomycin D and etoposide. Transfection of human prostate cancer PC3 cells with SAG small interfering RNA (siRNA) markedly decreased the expression of SAG, enhancing the susceptibility of actinomycin D- and etoposide-induced apoptosis reflected by DNA fragmentation, cellular redox status and the modulation of apoptotic marker proteins. These results indicate that SAG may play an important role in regulating the apoptosis induced by actinomycin D and etoposide and the sensitizing effect of SAG siRNA on the apoptotic cell death of PC3 cells offers the possibility of developing a modifier of cancer chemotherapy.  相似文献   

4.
5.
6.
Tropomyosin-related receptor kinase B (TrkB) signaling, stimulated by brain-derived neurotrophic factor (BDNF) ligand, promotes tumor progression, and is related to the poor prognosis of various malignancies. We sought to examine the clinical relevance of BDNF/TrkB expression in colorectal cancer (CRC) tissues, its prognostic value for CRC patients, and its therapeutic potential in vitro and in vivo. Two hundred and twenty-three CRC patient specimens were used to determine both BDNF and TrkB mRNA levels. The expression of these proteins in their primary and metastatic tumors was investigated by immunohistochemistry. CRC cell lines and recombinant BDNF and K252a (a selective pharmacological pan-Trk inhibitor) were used for in vitro cell viability, migration, invasion, anoikis resistance and in vivo peritoneal metastasis assays. Tissue BDNF mRNA was associated with liver and peritoneal metastasis. Tissue TrkB mRNA was also associated with lymph node metastasis. The co-expression of BDNF and TrkB was associated with liver and peritoneal metastasis. Patients with higher BDNF, TrkB, and co-expression of BDNF and TrkB had a significantly poor prognosis. BDNF increased tumor cell viability, migration, invasion and inhibited anoikis in the TrkB-expressing CRC cell lines. These effects were suppressed by K252a. In mice injected with DLD1 co-expressing BDNF and TrkB, and subsequently treated with K252a, peritoneal metastatic nodules was found to be reduced, as compared with control mice. BDNF/TrkB signaling may thus be a potential target for treating peritoneal carcinomatosis arising from colorectal cancer.  相似文献   

7.
Trypanosome trans-sialidase (TS) is a sialic acid-transferring enzyme and a novel ligand of tyrosine kinase (TrkA) receptors but not of neurotrophin receptor p75NTR. Here, we show that TS targets TrkB receptors on TrkB-expressing pheochromocytoma PC12 cells and colocalizes with TrkB receptor internalization and phosphorylation (pTrkB). Wild-type TS but not the catalytically inactive mutant TSDeltaAsp98-Glu induces pTrkB and mediates cell survival responses against death caused by oxidative stress in TrkA- and TrkB-expressing cells like those seen with nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). These same effects are not observed in Trk deficient PC12(nnr5) cells, but are re-established in PC12(nnr5) cells stably transfected with TrkA or TrkB, are partially blocked by inhibitors of tyrosine kinase (K-252a), mitogen-activated protein/mitogen-activated kinase (PD98059) and completely blocked by LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K). Both TrkA- and TrkB-expressing cells pretreated with TS or their natural ligands are protected against cell death caused by serum/glucose deprivation or from hypoxia-induced neurite retraction. The cell survival effects of NGF and BDNF against oxidative stress are significantly inhibited by the neuraminidase inhibitor, Tamiflu. Together, these observations suggest that trypanosome TS mimics neurotrophic factors in cell survival responses against oxidative stress, hypoxia-induced neurite retraction and serum/glucose deprivation.  相似文献   

8.
9.
10.
11.
The molecular mechanisms controlling DNA-damage-induced apoptosis of human embryonic stem cells (hESC) are poorly understood. Here we investigate the role of p53 in etoposide-induced apoptosis. We show that p53 is constitutively expressed at high levels in the cytoplasm of hESC. Etoposide treatment results in a rapid and extensive induction of apoptosis and leads to a further increase in p53 and PUMA expression as well as Bax processing. p53 both translocates to the nucleus and associates with the mitochondria, accompanied by colocalization of Bax with Mcl1. hESC stably transduced with p53 shRNA display 80% reduction of endogenous p53 and exhibit an 80% reduction in etoposide-induced apoptosis accompanied by constitutive downregulation of Bax and an attenuated upregulation of PUMA. Our data further show that undifferentiated hESC that express Oct4 are much more sensitive to etoposide-induced apoptosis than their more differentiated progeny. Our study demonstrates that p53 is required for etoposide-induced apoptosis of hESC and reveals, at least in part, the molecular mechanism of DNA-damage-induced apoptosis in hESC.  相似文献   

12.
13.
The MEK–ERK pathway plays a role in DNA damage response (DDR). This has been thoroughly studied by modulating MEK activation. However, much less has been done to directly examine the contributions of ERK1 and ERK2 kinases to DDR. Etoposide induces G2/M arrest in a variety of cell lines, including MCF7 cells. DNA damage-induced G2/M arrest depends on the activation of the protein kinase ataxia-telangiectasia mutated (ATM). ATM subsequently activates CHK2 by phosphorylating CHK2 threonine 68 (T68) and CHK2 inactivates CDC25C via phosphorylation of its serine 216 (S216), resulting in G2/M arrest. To determine the contribution of ERK1 and ERK2 to etoposide-induced G2/M arrest, we individually knocked-down ERK1 and ERK2 in MCF7 cells using specific small interfering RNA (siRNA). Knockdown of either kinases significantly reduced ATM activation in response to etoposide treatment, and thereby attenuated phosphorylation of the ATM substrates, including the S139 of H2AX (γH2AX), p53 S15, and CHK2 T68. Consistent with these observations, knockdown of either ERK1 or ERK2 reduced etoposide-induced CDC25C S216 phosphorylation and significantly compromised etoposide-induced G2/M arrest in MCF7 cells. Taken together, we demonstrated that both ERK1 and ERK2 kinases play a role in etoposide-induced G2/M arrest by facilitating activation of the ATM pathway. These observations suggest that a cellular threshold level of ERK kinase activity is required for the proper checkpoint activation in MCF7 cells.  相似文献   

14.
Lumen formation is essential for mammary morphogenesis and requires proliferative suppression and apoptotic clearance of the inner cells within developing acini. Previously, we showed that knockdown of p53 or p73 leads to aberrant mammary acinus formation accompanied with decreased expression of p53 family targets PUMA and p21, suggesting that PUMA, an inducer of apoptosis, and p21, an inducer of cell cycle arrest, directly regulate mammary morphogenesis. To address this, we generated multiple MCF10A cell lines in which PUMA, p21, or both were stably knocked down. We found that morphogenesis of MCF10A cells was altered modestly by knockdown of either PUMA or p21 alone but markedly by knockdown of both PUMA and p21. Moreover, we found that knockdown of PUMA and p21 leads to loss of E-cadherin expression along with increased expression of epithelial-to-mesenchymal transition (EMT) markers. Interestingly, we found that knockdown of ΔNp73, which antagonizes the ability of wide-type p53 and TA isoform of p73 to regulate PUMA and p21, mitigates the abnormal morphogenesis and EMT induced by knockdown of PUMA or p21. Together, our data suggest that PUMA cooperates with p21 to regulate normal acinus formation and EMT.  相似文献   

15.
Brain-derived neurotrophic factor (BDNF) promotes neuronal survival. Gaining an understanding of how BDNF, via the tropomyosin-related kinase B (TRKB) receptor, elicits specific cellular responses is of contemporary interest. Expression of mutant TrkB in fibroblasts, where tyrosine 484 was changed to phenylalanine, abrogated Shc association with TrkB, but only attenuated and did not block BDNF-induced phosphorylation of mitogen-activated protein kinase (MAPK). This suggests there is another BDNF-induced signaling mechanism for activating MAPK, which compelled a search for other TrkB substrates. BDNF induces phosphorylation of fibroblast growth factor receptor substrate 2 (FRS2) in both fibroblasts engineered to express TrkB and human neuroblastoma (NB) cells that naturally express TrkB. Additionally, BDNF induces phosphorylation of FRS2 in primary cultures of cortical neurons, thus showing that FRS2 is a physiologically relevant substrate of TrkB. Data are presented demonstrating that BDNF induces association of FRS2 with growth factor receptor-binding protein 2 (GRB2) in cortical neurons, fibroblasts, and NB cells, which in turn could activate the RAS/MAPK pathway. This is not dependent on Shc, since BDNF does not induce association of Shc and FRS2. Finally, the experiments suggest that FRS2 and suc-associated neurotrophic factor-induced tyrosine-phosphorylated target are the same protein.  相似文献   

16.
Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis; it has a poor prognosis and shows a predilection for metastasis to the lungs. Brain derived neurotrophic factor (BDNF) is a small-molecule protein from the neurotrophin family of growth factors that is associated with the disease status and outcomes of cancers. However, the effect of BDNF on migration activity in human chondrosarcoma cells is mostly unknown. Here, we found that human chondrosarcoma tissues showed significant expression of BDNF, which was higher than that in normal cartilage and primary chondrocytes. We also found that BDNF increased the migration and expression of β5 integrin in human chondrosarcoma cells. In addition, knockdown of BDNF expression markedly inhibited migratory activity. BDNF-mediated migration and β5 integrin up-regulation were attenuated by antibody, inhibitor, or siRNA against the TrkB receptor. Pretreatment of chondrosarcoma cells with PI3K, Akt, and NF-κB inhibitors or mutants also abolished BDNF-promoted migration and integrin expression. The PI3K, Akt, and NF-κB signaling pathway was activated after BDNF treatment. Taken together, our results indicate that BDNF enhances the migration of chondrosarcoma by increasing β5 integrin expression through a signal transduction pathway that involves the TrkB receptor, PI3K, Akt, and NF-κB. BDNF thus represents a promising new target for treating chondrosarcoma metastasis.  相似文献   

17.
He Q  Huang B  Zhao J  Zhang Y  Zhang S  Miao J 《The FEBS journal》2008,275(22):5725-5732
Integrin beta4 is a tissue-specific protein, but its role in autophagy of lung adenocarcinoma cells is not clear. In this study, we used microtubule-associated protein 1 light chain 3 processing and acridine orange staining to reveal that knockdown of integrin beta4 by its specific siRNA induced autophagic cell death in A549 lung cancer cells. Next, we investigated the effects of siRNA-mediated downregulation of integrin beta4 on cell death and the level of p53. The proportion of dead cells and level of p53 were significantly increased. Inhibition of autophagy by the inhibitor 3-methyladenine attenuated the cell death induced by integrin beta4 knockdown. To further understand the relationship between p53 and integrin beta4 in autophagic cell death, we inhibited the expression of integrin beta4 by its specific siRNA in p53-mutated H322 lung cancer cells. Knockdown of integrin beta4 could not induce autophagic cell death in H322 cells. The data suggest that integrin beta4 is implicated in and associated with p53 in autophagy of lung cancer cells.  相似文献   

18.
Fragile histidine trail (FHIT) is a tumor suppressor in response to DNA damage which has been deleted in various tumors. However, the signaling mechanisms and interactions of FHIT with regard to apoptotic proteins including p53 and p38 in the DNA damage-induced apoptosis are not well described. In the present study, we used etoposide-induced DNA damage in MCF-7 as a model to address these crosstalks. The time course study showed that the expression of FHIT, p53, and p38MAPK started after 1 hour following etoposide treatment. FHIT overexpression led to increase p53 expression, p38 activation, and augmented apoptosis following etoposide-induced DNA damage compared to wild-type cells. However, FHIT knockdown blocked p53 expression, delayed p38 activation, and completely inhibited etoposide-induced apoptosis. Inhibition of p38 activity prevented induction of p53, FHIT, and apoptosis in this model. Thus, activation of p38 upon etoposide treatment leads to increase in FHIT and p53 expression. In p53 knockdown MCF-7, the FHIT induction was hampered but p38 activation was induced in lower doses of etoposide. In p53 knockdown cells, inhibition of p38 induced FHIT expression and apoptosis. Our data demonstrated that the exposure of MCF-7 cells to etoposide increases apoptosis through a mechanism involving the activation of the p38-FHIT-p53 pathway. Moreover, our findings suggest signaling interaction for these pathways may represent a promising therapy for breast cancer.  相似文献   

19.
Agents commonly used in cancer chemotherapy rely on the induction of cell death via apoptosis, mitotic catastrophe, premature senescence and autophagy. Chemoresistance is the major factor limiting long-term treatment success in patients with hepatocellular carcinoma (HCC). Recent studies have revealed that the hepatitis B virus X protein (HBx) exerts anti-apoptotic effects, resulting in an increased drug resistance in HCC cells. In this study, we showed that etoposide treatment activated caspase-8 and caspase-3, leading to cleavages of p53, Bid and PARP, which subsequently induced apoptosis. Furthermore, p53 and Bid were accumulated in cytoplasm following etoposide treatment. However, HBx significantly attenuated etoposide-induced cell death. In HBx-expressing cells, despite the translocation of p53 and Bid to cytoplasm, the activation of caspases was inhibited. Furthermore, the phosphorylation of extracellular-signal-regulated kinase (ERK) was markedly increased in HBx-expressing cells. Moreover, the pretreatment with trichostatin A (TSA, a histone deacetylase inhibitor) or TSA in combination with etoposide significantly sensitized HCC cells to apoptosis by inhibiting ERK phosphorylation, reactivating caspases and PARP, and inducing translocation of p53 and Bid to cytoplasm. Collectively, HBx reduces the sensitivity of HCC cells to chemotherapy. TSA in combination with etoposide can significantly overcome the increased resistance of HBx-expressing HCC cells to chemotherapy.  相似文献   

20.
Apoptin, a protein derived from the chicken anaemia virus, induces cell death in various cancer cells but shows little or no cytotoxicity in normal cells. The mechanism of apoptin-induced cell death is currently unknown but it appears to induce apoptosis independent of p53 status. Here we show that p73, a p53 family member, is important in apoptin-induced apoptosis. In p53 deficient and/or mutated cells, apoptin induced the expression of TAp73 leading to the induction of apoptosis. Knockdown of p73 using siRNA resulted in a significant reduction in apoptin-induced cytotoxicity. The p53 and p73 pro-apoptotic target PUMA plays an important role in apoptin-induced cell death as knockdown of PUMA significantly reduced cell sensitivity to apoptin. Importantly, apoptin expression resulted in a marked increase in TAp73 protein stability. Investigation into the mechanisms of TAp73 stability showed that apoptin induced the expression of the ring finger domain ubiquitin ligase PIR2 which is involved in the degradation of the anti-apoptotic ?Np73 isoform. Collectively, our results suggest a novel mechanism of apoptin-induced apoptosis through increased TAp73 stability and induction of PIR2 resulting in the degradation of ?Np73 and activation of pro-apoptotic targets such as PUMA causing cancer cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号