首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autophagy is a catabolic pathway typically induced by nutrient starvation to recycle amino acids, but can also function in removing damaged organelles. In addition, this pathway plays a key role in eukaryotic development. To date, not much is known about the role of autophagy in apicomplexan parasites and more specifically in the human malaria parasite Plasmodium falciparum. Comparative genomic analysis has uncovered some, but not all, orthologs of autophagy-related (ATG) genes in the malaria parasite genome. Here, using a genome-wide in silico analysis, we confirmed that ATG genes whose products are required for vesicle expansion and completion are present, while genes involved in induction of autophagy and cargo packaging are mostly absent. We subsequently focused on the molecular and cellular function of P. falciparum ATG8 (PfATG8), an autophagosome membrane marker and key component of the autophagy pathway, throughout the parasite asexual and sexual erythrocytic stages. In this context, we showed that PfATG8 has a distinct and atypical role in parasite development. PfATG8 localized in the apicoplast and in vesicles throughout the cytosol during parasite development. Immunofluorescence assays of PfATG8 in apicoplast-minus parasites suggest that PfATG8 is involved in apicoplast biogenesis. Furthermore, treatment of parasite cultures with bafilomycin A1 and chloroquine, both lysosomotropic agents that inhibit autophagosome and lysosome fusion, resulted in dramatic morphological changes of the apicoplast, and parasite death. Furthermore, deep proteomic analysis of components associated with PfATG8 indicated that it may possibly be involved in ribophagy and piecemeal microautophagy of the nucleus. Collectively, our data revealed the importance and specificity of the autophagy pathway in the malaria parasite and offer potential novel therapeutic strategies.  相似文献   

2.
The ability of Leishmania to survive in their insect or mammalian host is dependent upon an ability to sense and adapt to changes in the microenvironment. However, little is known about the molecular mechanisms underlying the parasite response to environmental changes, such as nutrient availability. To elucidate nutrient stress response pathways in Leishmania donovani, we have used purine starvation as the paradigm. The salvage of purines from the host milieu is obligatory for parasite replication; nevertheless, purine-starved parasites can persist in culture without supplementary purine for over three months, indicating that the response to purine starvation is robust and engenders parasite survival under conditions of extreme scarcity. To understand metabolic reprogramming during purine starvation we have employed global approaches. Whole proteome comparisons between purine-starved and purine-replete parasites over a 6–48 h span have revealed a temporal and coordinated response to purine starvation. Purine transporters and enzymes involved in acquisition at the cell surface are upregulated within a few hours of purine removal from the media, while other key purine salvage components are upregulated later in the time-course and more modestly. After 48 h, the proteome of purine-starved parasites is extensively remodeled and adaptations to purine stress appear tailored to deal with both purine deprivation and general stress. To probe the molecular mechanisms affecting proteome remodeling in response to purine starvation, comparative RNA-seq analyses, qRT-PCR, and luciferase reporter assays were performed on purine-starved versus purine-replete parasites. While the regulation of a minority of proteins tracked with changes at the mRNA level, for many regulated proteins it appears that proteome remodeling during purine stress occurs primarily via translational and/or post-translational mechanisms.  相似文献   

3.
《Autophagy》2013,9(1):80-92
Autophagy is a catabolic pathway typically induced by nutrient starvation to recycle amino acids, but can also function in removing damaged organelles. In addition, this pathway plays a key role in eukaryotic development. To date, not much is known about the role of autophagy in apicomplexan parasites and more specifically in the human malaria parasite Plasmodium falciparum. Comparative genomic analysis has uncovered some, but not all, orthologs of autophagy-related (ATG) genes in the malaria parasite genome. Here, using a genome-wide in silico analysis, we confirmed that ATG genes whose products are required for vesicle expansion and completion are present, while genes involved in induction of autophagy and cargo packaging are mostly absent. We subsequently focused on the molecular and cellular function of P. falciparum ATG8 (PfATG8), an autophagosome membrane marker and key component of the autophagy pathway, throughout the parasite asexual and sexual erythrocytic stages. In this context, we showed that PfATG8 has a distinct and atypical role in parasite development. PfATG8 localized in the apicoplast and in vesicles throughout the cytosol during parasite development. Immunofluorescence assays of PfATG8 in apicoplast-minus parasites suggest that PfATG8 is involved in apicoplast biogenesis. Furthermore, treatment of parasite cultures with bafilomycin A1 and chloroquine, both lysosomotropic agents that inhibit autophagosome and lysosome fusion, resulted in dramatic morphological changes of the apicoplast, and parasite death. Furthermore, deep proteomic analysis of components associated with PfATG8 indicated that it may possibly be involved in ribophagy and piecemeal microautophagy of the nucleus. Collectively, our data revealed the importance and specificity of the autophagy pathway in the malaria parasite and offer potential novel therapeutic strategies.  相似文献   

4.
5.
6.
7.
CRISPR/Cas9 is a powerful genome editing method that has greatly facilitated functional studies in many eukaryotic organisms including malaria parasites. Due to the lack of genes encoding enzymes necessary for the non-homologous end joining DNA repair pathway, genetic manipulation of malaria parasite genomes is generally accomplished through homologous recombination requiring the presence of DNA templates. Recently, an alternative double-strand break repair pathway, microhomology-mediated end joining, was found in the Plasmodium falciparum parasite. Taking advantage of the MMEJ pathway, we developed a MMEJ-based CRISPR/Cas9 (mCRISPR) strategy to efficiently generate multiple mutant parasites simultaneously in genes with repetitive sequences. As a proof of principle, we successfully produced various size mutants in the central repeat region of the Plasmodium yoelii circumsporozoite surface protein without the use of template DNA. Monitoring mixed parasite populations and individual parasites with different sizes of CSP-CRR showed that the CSP-CRR plays a role in the development of mosquito stages, with severe developmental defects in parasites with large deletions in the repeat region. However, the majority of the csp mutant parasite clones grew similarly to the wild type P. yoelii 17XL parasite in mice. This study develops a useful technique to efficiently generate mutant parasites with deletions or insertions, and shows that the CSP-CRR plays a role in parasite development in mosquito.  相似文献   

8.
Molecular interactions between a parasite and its host are key to the ability of the parasite to enter the host and persist. Our understanding of the genes and proteins involved in these interactions is limited. To better understand these processes it would be advantageous to have a range of methods to predict pairs of genes involved in such interactions. Correlated gene expression profiles can be used to identify molecular interactions within a species. Here we have extended the concept to different species, showing that genes with correlated expression are more likely to encode proteins, which directly or indirectly participate in host–parasite interaction. We go on to examine our predictions of molecular interactions between the malaria parasite and both its mammalian host and insect vector. Our approach could be applied to study any interaction between species, for example, between a host and its parasites or pathogens, but also symbiotic and commensal pairings.  相似文献   

9.
10.
11.
BackgroundArtemisinin-resistant falciparum malaria has emerged in Southeast Asia, posing a major threat to malaria control. It is characterised by delayed asexual-stage parasite clearance, which is the reference comparator for the molecular marker ‘Kelch 13’ and in vitro sensitivity tests. However, current cut-off values denoting slow clearance based on the proportion of individuals remaining parasitaemic on the third day of treatment (''day-3''), or on peripheral blood parasite half-life, are not well supported. We here explore the parasite clearance distributions in an area of artemisinin resistance with the aim refining the in vivo phenotypic definitions.ConclusionsCharacterisation of overlapping distributions of parasite half-lives provides quantitative insight into the relationship between parasite clearance and artemisinin resistance, as well as the predictive value of the 10% cut-off in ''day-3'' parasitaemia. The findings are important for the interpretation of in vitro sensitivity tests and molecular markers for artemisinin resistance and for contextualising the ‘day 3’ threshold to account for initial parasitaemia and sample size.  相似文献   

12.
Red cells infected with the human malaria parasite Plasmodium falciparum have an increased permeability to a range of small, structurally unrelated solutes via a malaria-induced pathway. We report here a similar pathway present in parasitised red cells from chickens infected with the avian malaria parasite, Plasmodium gallinaceum. Parasitised cells showed a marked increase in the rate of influx of sorbitol (76-fold) and, to a lesser degree, taurine (3-fold) when compared with red cells from uninfected chickens. Pharmacological data suggest that both sorbitol and taurine are transported via a single malaria-induced pathway, which is sensitive to inhibition by 5-nitro-2-(3-phenylpropylamino)benzoic acid (IC50∼7 μM). The malaria-induced pathway differed in its inhibition by a range of anion channel inhibitors when compared to the endogenous, volume-activated osmolyte pathway of chicken red cells. There were also differences in the selectivity of sorbitol and taurine by the two permeation routes. The data presented here are consistent with the presence of two distinct organic solute pathways in infected chicken red cells. The first is an endogenous volume-activated pathway, which is not activated by the parasite and the second is a malaria-induced pathway, similar to those that are induced by other types of malaria in other host species.  相似文献   

13.
Webster H. K., Haut M. J., Martin L. K. and Hildebrandt P. K. 1982. Purine and pyrimidine nucleotide profiles during synchronous malaria infection (Plasmodium knowlesi in the rhesus monkey. International Journal for Parasitology12: 75–79. Blood levels of purine and pyrimidine nucleotides were determined during synchronous infection by Plasmodium knowlesi in rhesus monkeys. Infected monkeys followed over 2–3 intraerythrocytic cycles showed variations in nucleotide pool levels characteristic of the predominant schizogonic growth stage. These changes in nucleotide levels as described for ‘ring’-stage, trophozoite growth and schizogony indicate a cyclically varying relationship between nucleotide concentrations and a specific stage of parasite development during the blood-phase of malaria infection.  相似文献   

14.
Blood feeding is an integral process required for physiological functions and propagation of the malaria vector Anopheles. During blood feeding, presence of the malaria parasite, Plasmodium in the blood induces several host effector molecules including microRNAs which play important roles in the development and maturation of the parasite within the mosquito. The present study was undertaken to elucidate the dynamic expression of miRNAs during gonotrophic cycle and parasite development in Anopheles stephensi. Using next generation sequencing technology, we identified 126 miRNAs of which 17 were novel miRNAs. The miRNAs were further validated by northern hybridization and cloning. Blood feeding and parasitized blood feeding in the mosquitoes revealed regulation of 13 and 16 miRNAs respectively. Expression profiling of these miRNAs revealed that significant miRNAs were down-regulated upon parasitized blood feeding with a repertoire of miRNAs showing stage specific up-regulation. Expression profiles of significantly modulated miRNAs were further validated by real time PCR. Target prediction of regulated miRNAs revealed overlapping targeting by different miRNAs. These targets included several metabolic pathways including metabolic, redox homeostasis and protein processing machinery components. Our analysis revealed tight regulation of specific miRNAs post blood feeding and parasite infection in An. stephensi. Such regulated expression suggests possible role of these miRNAs during gonotrophic cycle in mosquito. Another set of miRNAs were also significantly regulated at 42 h and 5 days post infection indicating parasite stage-specific role of host miRNAs. This study will result in better understanding of the role of miRNAs during gonotrophic cycle and parasite development in mosquito and can probably facilitate in devising novel malaria control strategies at vector level.  相似文献   

15.
16.

Background

The soybean cyst nematode Heterodera glycines is the most important parasite in soybean production worldwide. A comprehensive analysis of large-scale gene expression changes throughout the development of plant-parasitic nematodes has been lacking to date.

Results

We report an extensive genomic analysis of H. glycines, beginning with the generation of 20,100 expressed sequence tags (ESTs). In-depth analysis of these ESTs plus approximately 1,900 previously published sequences predicted 6,860 unique H. glycines genes and allowed a classification by function using InterProScan. Expression profiling of all 6,860 genes throughout the H. glycines life cycle was undertaken using the Affymetrix Soybean Genome Array GeneChip. Our data sets and results represent a comprehensive resource for molecular studies of H. glycines. Demonstrating the power of this resource, we were able to address whether arrested development in the Caenorhabditis elegans dauer larva and the H. glycines infective second-stage juvenile (J2) exhibits shared gene expression profiles. We determined that the gene expression profiles associated with the C. elegans dauer pathway are not uniformly conserved in H. glycines and that the expression profiles of genes for metabolic enzymes of C. elegans dauer larvae and H. glycines infective J2 are dissimilar.

Conclusion

Our results indicate that hallmark gene expression patterns and metabolism features are not shared in the developmentally arrested life stages of C. elegans and H. glycines, suggesting that developmental arrest in these two nematode species has undergone more divergent evolution than previously thought and pointing to the need for detailed genomic analyses of individual parasite species.  相似文献   

17.
The malaria parasite Plasmodium falciparum and related organisms possess a relict plastid known as the apicoplast. Apicoplast protein synthesis is a validated drug target in malaria because antibiotics that inhibit translation in prokaryotes also inhibit apicoplast protein synthesis and are sometimes used for malaria prophylaxis or treatment. We identified components of an indirect aminoacylation pathway for Gln-tRNAGln biosynthesis in Plasmodium that we hypothesized would be essential for apicoplast protein synthesis. Here, we report our characterization of the first enzyme in this pathway, the apicoplast glutamyl-tRNA synthetase (GluRS). We expressed the recombinant P. falciparum enzyme in Escherichia coli, showed that it is nondiscriminating because it glutamylates both apicoplast tRNAGlu and tRNAGln, determined its kinetic parameters, and demonstrated its inhibition by a known bacterial GluRS inhibitor. We also localized the Plasmodium berghei ortholog to the apicoplast in blood stage parasites but could not delete the PbGluRS gene. These data show that Gln-tRNAGln biosynthesis in the Plasmodium apicoplast proceeds via an essential indirect aminoacylation pathway that is reminiscent of bacteria and plastids.  相似文献   

18.
19.

Background  

Purine nucleoside phosphorylase (PNP) is central to purine salvage mechanisms in Plasmodium parasites, the causative agents of malaria. Most human malaria results from infection either by Plasmodium falciparum (Pf), the deadliest form of the parasite, or by the widespread Plasmodium vivax (Pv). Whereas the PNP enzyme from Pf has previously been studied in detail, despite the prevalence of Pv little is known about many of the key metabolic enzymes from this parasite, including PvPNP.  相似文献   

20.
The insulin/insulin-like growth factor signaling (IIS) cascade is highly conserved and regulates diverse physiological processes such as metabolism, lifespan, reproduction and immunity. Transgenic overexpression of Akt, a critical regulator of IIS, was previously shown to shorten mosquito lifespan and increase resistance to the human malaria parasite Plasmodium falciparum. To further understand how IIS controls mosquito physiology and resistance to malaria parasite infection, we overexpressed an inhibitor of IIS, phosphatase and tensin homolog (PTEN), in the Anopheles stephensi midgut. PTEN overexpression inhibited phosphorylation of the IIS protein FOXO, an expected target for PTEN, in the midgut of A. stephensi. Further, PTEN overexpression extended mosquito lifespan and increased resistance to P. falciparum development. The reduction in parasite development did not appear to be due to alterations in an innate immune response, but rather was associated with increased expression of genes regulating autophagy and stem cell maintenance in the midgut and with enhanced midgut barrier integrity. In light of previous success in genetically targeting the IIS pathway to alter mosquito lifespan and malaria parasite transmission, these data confirm that multiple strategies to genetically manipulate IIS can be leveraged to generate fit, resistant mosquitoes for malaria control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号