首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Nine patients with neuroblastoma stage IV were treated with the murine monoclonal antibody 14.G2a, directed against disialoganglioside GD2. The antibody was injected daily for 5–10 days and the total applied dosage ranged between 100 mg/m2 and 400 mg/m2. The peak serum levels of mAb 14.G2a ranged from 28 µg/ml to 61 µg/ml. Pharmacokinetic data obtained in three patients indicated that the serum elimination of mAb 14.G2a fits a two-compartment model, with an -half-time (t 1/2 ) between 0.66 h and 1.98 h and a -half-time (t 1/2 ) between 30.13 h and 53.33 h. All patients presented with a human anti-(mouse IgG) antibody response either during or shortly after therapy. Eight patients showed a continuous decrease in complement component C4 during therapy, as well as an initial decrease in C3c and an initial increase in C3a, all suggesting an activation of the complement cascade. Side-effects consisted of allergic reactions like pruritus, exanthema, urticaria and of severe pain, predominantly located in the abdomen and lower extremities, which required the use of continuous intravenous morphine. Four patients additionally developed a transient hypertension and one patient experienced a transient nephrotic syndrome. Three patients were treated in an adjuvant setting and are not evaluable for tumor response. Of the remaining six patients, two had a complete remission, two showed a partial remission, and two patients did not respond to treatment.Supported by the Deutsche Krebshilfe  相似文献   

2.
Recent reports suggest that protein kinase C is involved in neural differentiation. We show that 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7), the more specific inhibitor of protein kinase C known, induces morphological and functional differentiation of neuro 2a cells, as indicated by the marked increase in the number of neurites/cell and in acetylcholinesterase activity. HA 1004 does not induce differentiation of neural cells. The induction of differentiation by H7 was very rapid; 3 h after addition of H7 the percentages of differentiated cells were 17, 33, 37, 55, and 75% for 17, 50, 85, 250, and 500 microM H7, respectively, while for controls it was 9%. When 500 microM H7 was added to the culture medium, protein kinase C was inhibited by 72 and 62% in cytosol and membrane, respectively. Also, acetylcholinesterase activity (a marker of functional differentiation) increased with time, reaching a 7-fold increase after 48 h.  相似文献   

3.
The system of extracellular proteolysing, consists of plasminogen (PGn), its active protease (plasmin), PGn activation and PGn activators inhibitors, influences the nervous tissue functions, their growth, differentiation and proliferation in both, normal and pathological conditions. The purpose of the investigation was to study the effects of exogenous PGn, its activator streptokinase (SK), PK and their equimolar complex on the morpho-functional state neuroblastoma IMR-32 cells. PGn, SK, PK and their complexes stimulated cells proliferation during 1-3 days of incubation, shown by cell quantity increase. We also observed DNA, RNA and protein increase. The low lactate dehydrogenase efflux was evidence of that an addition of the proteins under investigation in the culture medium prevented the development of degenerative alterations connected with serum deprivation. The levels of extracellular PGn-activator activity, as measured by the biochemical fibrinolytic assay, increased over SK. This SK effect vanished on the 3rd day when SK formed complexes with PK. New original facts obtained testify the probability of initiation of neoplastic transformation and tumor growth potentiation.  相似文献   

4.
The system of extracellular proteolysis consisted of plasminogen (PGn), its active protease, plasmin, and PGn activators and their inhibitors affect the growth, differentiation, and proliferation of nervous cells both under normal and pathological conditions. The purpose of our investigation was to study the effects of exogenous PGn, its activator, streptokinase (SK), pyruvate kinase (PK), and their equimolar complexes on morphological and functional properties of IMR-32 neuroblastoma cells. It has been found that PGn, SK, PK, and their complexes stimulate cell proliferation during 1–3 days of incubation. We also observed increased DNA, RNA, and protein content. The low-lactate dehydrogenase (LDH) efflux indicated that the addition of the proteins we assayed to the culture medium prevented the development of degenerative processes caused by serum deprivation. The levels of extracellular PGn-activator activity, as measured by the fibrinolytic method, increased in the presence of SK. The SK effect vanished if SK was in the complex with PK on the 3rd day of cultivation. New original facts were obtained to testify the probability of initiation of neoplastic transformation and tumor growth potentiation.  相似文献   

5.
The antioxidant-responsive element (ARE) plays an important role in the induction of phase II detoxifying enzymes including NADPH:quinone oxidoreductase (NQO1). We report herein that activation of the human NQO1-ARE (hNQO1-ARE) by tert-butylhydroquinone (tBHQ) is mediated by phosphatidylinositol 3-kinase (PI3-kinase), not extracellular signal-regulated kinase (Erk1/2), in IMR-32 human neuroblastoma cells. Treatment with tBHQ significantly increased NQO1 protein without activation of Erk1/2. In addition, PD 98059 (a selective mitogen-activated kinase/Erk kinase inhibitor) did not inhibit hNQO1-ARE-luciferase expression or NQO1 protein induction by tBHQ. Pretreatment with LY 294002 (a selective PI3-kinase inhibitor), however, inhibited both hNQO1-ARE-luciferase expression and endogenous NQO1 protein induction. In support of a role for PI3-kinase in ARE activation we show that: 1) transfection of IMR-32 cells with constitutively active PI3-kinase selectively activated the ARE in a dose-dependent manner that was completely inhibited by treatment with LY 294002; 2) pretreatment of cells with the PI3-kinase inhibitors, LY 294002 and wortmannin, significantly decreased NF-E2-related factor 2 (Nrf2) nuclear translocation induced by tBHQ; and 3) ARE activation by constitutively active PI3-kinase was blocked completely by dominant negative Nrf2. Taken together, these data clearly show that ARE activation by tBHQ depends on PI3-kinase, which lies upstream of Nrf2.  相似文献   

6.
Differentiated neurons were investigated for their susceptibility to oxidative damage based on variations in the oxidant defense system occurring during differentiation. The main antioxidant enzymes and substances in human neuroblastoma (IMR-32) cells were evaluated pre- and post-differentiation to a neuronal phenotype. The activity of CuZn superoxide dismutase (CuZnSOD) and Mn superoxide dismutase (MnSOD) and the concentration of CuZnSOD were higher, but the activity and concentration of catalase were lower after differentiation. Differentiated cells had higher activity of glutathione peroxidase (GPx), lower concentration of total glutathione, a higher ratio of oxidised/reduced glutathione and lower activity of glucose-6-phosphate dehydrogenase than undifferentiated cells. We conclude that differentiated neuronal cells may be highly susceptible to oxidant-mediated damage based on the relative activities of the main antioxidant enzymes and on a limited capacity to synthesise and/or recycle glutathione.  相似文献   

7.
8.
Neurite outgrowth is essential for the communication of the nervous system. The rat Pheochromocytoma (PC12) cells are commonly used in the neuronal cell study. It is well known that exogenous stimuli such as Nerve Growth Factor (NGF) induce neurite outgrowth. In the present study it has been investigated whether or not the conditioned medium from human neuroblastoma cell line (IMR-32) and human glioblastoma cell line (U87MG) may augment neurite outgrowth in PC12 cells. PC12 were cultured with and without conditioned media of IMR-32 and U87MG. The result showed that both the conditioned media induce neurite outgrowth within 48 hr and stops further proliferation of PC12 cells. However no outgrowth was noted in PC12 cells incubated without conditioned medium. In conclusion, it is shown that both the conditioned media (IMR-32 and U87MG) have the potential to induce the neurite outgrowth in the PC12 cells.  相似文献   

9.
The capacity of Al(3+) to induce changes in the physical properties of plasma membrane from human neuroblastoma cells (IMR-32) was investigated, and the magnitude of the changes was compared with that obtained after cell differentiation to a neuronal phenotype. Similarly to our previous results in liposomes, Al(3+) (10 to 100 microM) caused a significant loss of membrane fluidity, being the differentiated cells more affected than the nondifferentiated cells. Al(3+) also increased the relative content of lipids in gel phase and promoted lipid rearrangement through lateral phase separation, with the magnitude of this effect being similar in nondifferentiated and differentiated cells. Since membrane physical properties depend on bilayer composition, we characterized the content of proteins, phospholipids, cholesterol, and fatty acids in the IMR-32 cells before and after differentiation. Differentiated cells had a significantly higher content of unsaturated fatty acids, creating an environment that favors Al(3+)-mediated effects on the bilayer fluidity. The neurotoxic effects of Al(3+) may be, at least in part, due to alterations of neuronal membrane physical properties, with potential consequences on the normal functioning of membrane-related cellular processes.  相似文献   

10.
Summary Monoclonal antibody 14G2a (anti-GD2) reacts with cell lines and tumor tissues of neuroectodermal origin that express disialoganglioside GD2. mAb 14G2a was coupled to the ribosome-inactivating plant toxin gelonin with the heterobifunctional cross-linking reagentN-succinimidyl-3(2-pyridyldithio)propionate. The activity of the immunotoxin was assessed by a cell-free translation assay that confirmed the presence of active gelonin coupled to 14G2a. Data from an enzyme-linked immunosorbent assay demonstrated the specificity and immunoreactivity of the 14G2a-gelonin immunotoxin, which was identical to that of native 14G2a. Assays for complement-dependent cytotoxicity (CDC) and antibody-dependent cellular cytotoxicity (ADCC) revealed that these functional properties of the native 14G2a antibody were also preserved in the 14G2a-gelonin immunotoxin. The gelonin-14G2a immunotoxin was directly cytotoxic to human melanoma (A375-M and AAB-527) cells and was 1000-fold more active than native gelonin in inhibiting the growth of human melanoma cells in vitro. The augmentation of tumor cell killing of 14G2a-gelonin immunotoxin was examined with several lysosomotropic compounds. Chloroquine and monensin, when combined with 14G2a-gelonin immunotoxin, augmented its cytotoxicity more than 10-fold. Biological response modifiers such as tumor necrosis factor and interferon and chemotherapeutic agents such as cisplatinum andN,N-bis(2-chloroethyl)-N-nitrosourea (carmustine) augmented the cytotoxicity of 14G2a-gelonin 4- to 5-fold. The results of these studies suggest that 14G2a-gelonin may operate directly by both cytotoxic efforts and indirectly by mediating both ADCC and CDC activity against tumor cells; thus it may prove useful in the future for therapy of human neuroectodermal tumors.Research conducted, in part, by the Clayton Foundation for Research  相似文献   

11.
Monoclonal antibodies targeting GD2 ganglioside (GD2) have recently been approved for the treatment of high risk neuroblastoma and are extensively evaluated in clinics in other indications. This study illustrates how a therapeutic antibody distinguishes between different types of gangliosides present on normal and cancer cells and informs how synthetic peptides can imitate ganglioside in its binding to the antibody. Using high resolution crystal structures we demonstrate that the ganglioside recognition by a model antibody (14G2a) is based primarily on an extended network of direct and water molecule mediated hydrogen bonds. Comparison of the GD2-Fab structure with that of a ligand free antibody reveals an induced fit mechanism of ligand binding. These conclusions are validated by directed mutagenesis and allowed structure guided generation of antibody variant with improved affinity toward GD2. Contrary to the carbohydrate, both evaluated mimetic peptides utilize a “key and lock” interaction mechanism complementing the surface of the antibody binding groove exactly as found in the empty structure. The interaction of both peptides with the Fab relies considerably on hydrophobic contacts however, the detailed connections differ significantly between the peptides. As such, the evaluated peptide carbohydrate mimicry is defined primarily in a functional and not in structural manner.Malignant transformation is universally accompanied by changes in cell surface glycosylation. A glycolipid, GD2 ganglioside (GD2)1, is one of the most prominent tumor-associated antigens, ranking in the 12th position of the NCI prioritized list of cancer vaccine targets (1). GD2 is embedded in the outer plasma membrane with its ceramide tail (fatty acid coupled sphingosine). The sugar moiety is exposed to the extracellular milieu and is composed of glucose (Glc; linked to ceramide), galactose (Gal) and N-acetylgalactosamine (GalNAc). Two additional sialic acid residues (N-acetylneuraminic acid, NeuAc) branch form Gal and provide GD2 with a negative charge (Fig. 1). Overexpression of GD2 is well documented in neuroblastoma, melanoma, certain osteosarcomas, small cell lung cancers, and soft tissue sarcomas (24).Open in a separate windowFig. 1.Recognition of GD2 ganglioside by monoclonal antibody 14G2a at the cell surface. (top panel) Antigen combining region of 14G2a antibody recognizes the sugar moiety of GD2 ganglioside (yellow), which is exposed to the extracellular milieu. The lipid part of the ganglioside is buried inside the cell membrane. GD2 bound Fab structure determined in this study is shown in color. Fc fragment (PDB ID: 1igt) and membrane model derived from published data are shown in corresponding scale and colored gray. (bottom panel) Chemical structure of GD2 ganglioside and sugar ring nomenclature used throughout the study.The concept of therapeutic targeting of GD2 is currently most advanced in neuroblastoma, the most common extracranial tumor of childhood. Neuroblastoma is a heterogenous and complex disease. Spontaneous remissions are sometimes observed, but more than a half of the patients are diagnosed with a high-risk neuroblastoma of poor prognosis. This highlights the demand for treatment modalities that would offer major clinical benefits for this group of patients (5). High and stable presence of GD2 on cancer cells in neuroblastoma and limited expression on relevant normal tissues (i.e. neurons, peripheral nerve fibers and skin melanocytes) allows diagnosis, detection of metastases, treatment monitoring and, most importantly, targeting of the tumor itself.GD2-specific monoclonal antibodies have been extensively tested in clinics. This includes a mouse 14G2a antibody (IgG2a; derived from a mouse 14.18 antibody of IgG3 subclass), and improved modifications thereof including a chimeric antibody ch14.18, and recently a humanized antibody hu14.18K322A. Moreover, mouse 3F8 antibody (IgG3) and recently its humanized derivative hu3F8 were also evaluated. The antibodies were demonstrated to engage antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against neuroblastoma (5). Additionally, direct cytotoxic effects were observed in neuroblastoma models (6). The results of a randomized clinical trial published in 2010, evaluating ch14.18, interleukin-2 and granulocyte and macrophage-colony stimulating factor combined with a standard maintenance agent 13-cis retinoic acid demonstrated significant improvement of outcome in high-risk neuroblastoma patients (7). Based on these and further findings, the Food and Drug Administration (FDA) has just recently approved Unituxin (dinutuximab; ch14.18) combination therapy for high risk neuroblastoma (8). Therefore, the standard care treatment protocols may now be extended with monoclonal antibodies targeting GD2 for a better expected outcome.Antibodies against gangliosides other than GD2 are considered as potential therapeutic agents in different types of cancer. Ganglioside-specific antibodies are moreover involved in various types of autoimmune diseases (9). Nevertheless, the molecular mechanism of ganglioside recognition remains unknown because not a single crystal structure of antibody–ganglioside complex has been determined to date. In particular, it is not known how the specificity against GD2 is achieved in antibodies evaluated in clinics. Although crystal structures of empty ME36.1 antibody specific for GD2 and GD3 (10) and empty 3F8 antibody specific for GD2 (11) were determined, the conclusions concerning GD2 binding have to be treated with caution because of general limitations in reliable prediction of binding modes of complex, flexible ligands in dynamic pockets.The success of GD2-specific antibodies in treatment of neuroblastoma fuels investigation on active immunization strategies. To overcome poor antigenicity of GD2, glycolipid surrogates including peptide mimetics are being developed. The idea of a peptide vaccine eliciting anticarbohydrate response has been precedented in the case of Group B Streptococcus polysaccharide (12). Multiple peptides mimicking GD2 in its binding to specific antibodies were selected using phage display (13, 14) and some have been demonstrated to elicit protective, GD2 directed response in preclinical studies. However, the structural basis of peptide-ganglioside mimicry and its relation to the potential of particular peptides to induce GD2 directed immune response remain unknown.Here, we analyze the interactions guiding ganglioside recognition by an antibody and the structural basis of peptide-ganglioside mimicry. The crystal structure of Fab fragment of 14G2a antibody in a complex with the sugar moiety of GD2 ganglioside is provided and the binding mode is discussed in detail. Structure of an empty 14G2a antibody is reported for reference. The major conclusions are verified by directed mutagenesis and antibody variant with increased affinity toward GD2 is developed using structure guided approach. The binding modes of two largely divergent peptide mimics of GD2 (15) at the antigen-binding site of 14G2a antibody are reported and compared with that of the carbohydrate. Mouse 14G2a antibody was chosen for this study because it contains the same antigen binding region as the ch14.18 chimeric antibody recently approved by FDA (8).  相似文献   

12.
13.
14.
A phase I trial of a murine anti-ganglioside (GD2) monoclonal antibody (mAb) 14G2a was conducted in 14 neuroblastoma patients and 1 osteosarcoma patient to assess its safety, toxicity and pharmacokinetics in pediatric patients. The pharmacokinetics of mAb 14G2a were biphasic with at 1 2/ of 2.8±2.8 h and at 1 2/ of 18.3±11.8 h. In general,t 1 2/ was dose-dependent with a level of significance ofP=0.036, and it reached a plateau at doses of 250 mg/m2 or more. Overall the peak serum levels were dose-dependent atP<0.001. However, they demonstrated an abrupt increase between doses of 100 mg/m2 and 250 mg/m2. The latter two suggest a saturable mechanism for mAb elimination. In addition, peak serum concentrations were observed earlier at higher mAb doses, which indicates the achievement of a steady state. Thet 1 2/ of mAb 14G2a in children appears to be shorter than in adults. Furthermore, 2 patients demonstrated a considerable decrease int 1 2/ following retreatment with 14G2a. This was paralleled by high human anti-(mouse Ig) antibody levels. This study represents the first comprehensive analysis of murine mAb pharmacokinetics in children and will be useful in the future design of mAb therapy.This work was supported by grants from FDA, FD-R-000377 and NIH U10 CA 28439 and in part by a grant from the general Clinical Research Center program, MOI RR00827, of the National Center for Research Resources, National Institutes of Health. M. M. U.-F. and C.-S. H. were supported in part by a grant from the Children's Cancer Research Foundation, and R. A. R. was supported in part by NIH grant CA 42508  相似文献   

15.
Human melanoma cells express relatively large amounts of the disialogangliosides GD3 and GD2 on their surface whereas neuroblastoma cells express GD2 as a major ganglioside. Monoclonal antibodies (Mabs) directed specifically to the carbohydrate moiety of GD3 and GD2 inhibit melanoma and neuroblastoma cell attachment to various substrate adhesive proteins, e.g. collagen, vitronectin, laminin, fibronectin, and a heptapeptide, glycyl-L-arginyl-glycyl-L-aspartyl-L-seryl-L-prolyl- L-cysteine, which constitutes the cell attachment site of fibronectin. Cells that are preattached to a fibronectin substrate can also be induced to detach and round up in the presence of purified anti- ganglioside Mab. Moreover, when melanoma cells that contain both GD2 and GD3 are incubated with Mabs directed to both of these molecules an additive inhibition is observed. The specificity of this inhibition is demonstrated since Mabs of various isotypes directed to either protein or carbohydrate epitopes on a number of other major melanoma or neuroblastoma cell surface antigens have no effect on cell attachment. A study of the kinetics involved in this inhibition indicates that significant effects occur during the first 5 min of cell attachment, suggesting an important role for GD2 and GD3 in the initial events of cell-substrate interactions. The role of gangliosides in cell attachment apparently does not directly involve a strong interaction with fibronectin since we could not observe any binding of radiolabeled fibronectin or fragments of the molecule known to contain the cell attachment site to melanoma gangliosides separated on thin-layer chromatograms. An alternative explanation would be that gangliosides may play a role in the electrostatic requirements for cell-substrate interactions. In this regard, controlled periodate oxidation of terminal, unsubstituted sialic acid residues on the cell surface not only specifically destroys the antigenic epitopes on GD2 and GD3 recognized by specific Mabs but also inhibits melanoma cell and neuroblastoma cell attachment. In fact, the periodate-induced ganglioside oxidation and the inhibition of cell attachment are equally dose dependent. These data suggest that cell-substratum interactions may depend in part on the electrostatic environment provided by terminal sialic acid residues of cell surface gangliosides and possibly other anionic glycoconjugates.  相似文献   

16.
Prostate apoptosis response-4 (Par-4) is a leucine zipper protein that promotes neuronal cell death in Alzheimer's disease (AD). Neuronal degeneration in AD may result from extracellular accumulation of amyloid beta peptide (Abeta) 1-42. To examine the effect of Par-4 on Abeta secretion and to reconcile amyloid/apoptosis hypotheses of AD, we generated IMR-32 cell lines that overexpress Par-4 and/or its leucine zipper domain. Overexpression of Par-4 did not significantly affect levels of the endogenously expressed beta amyloid precursor protein but drastically increased the Abeta(1-42)/Abeta(total) ratio in the conditioned media about 6-8 h after trophic factor withdrawal. Time course analysis of caspase activation reveals that Par-4 overexpression exacerbated caspase activation, which is detectable within 2 h after trophic factor withdrawal. Furthermore, inhibition of caspase activity by the broad spectrum caspase inhibitor BD-fmk significantly attenuated the Par-4-induced increase in Abeta 1-42 production. In addition, the effects of Par-4 on secretion of Abeta 1-42 were consistently blocked by co-expression of the leucine zipper domain, indicating that the effect of Par-4 on Abeta secretion may require its interaction with other protein(s). These results suggest that Par-4 increases secretion of Abeta 1-42 largely through a caspase-dependent pathway after apoptotic cascades are initiated.  相似文献   

17.
Tsai CW  Lin CY  Lin HH  Chen JH 《Neurochemical research》2011,36(12):2442-2451
Carnosic acid (CA), a rosemary phenolic compound, has been shown to display anti-cancer activity. We examined the apoptotic effect of CA in human neuroblastoma IMR-32 cells and elucidated the role of the reactive oxygen species (ROS) and mitogen-activated protein kinase (MAPK) associated with carcinogenesis. The result indicated that CA decreased the cell viability in a dose-dependent manner. Further investigation in IMR-32 cells revealed that cell apoptosis following CA treatment is the mechanism as confirmed by flow cytometry, hoechst 33258, and caspase-3/-9 and poly(ADP-ribose) polymerase (PARP) activation. Immunoblotting suggested a down-regulation of anti-apoptotic Bcl-2 protein in the CA-treated cells. In flow cytometric analysis, CA caused the generation of reactive oxygen species (ROS); however, pretreatment with the antioxidant N-acetylcysteine (NAC) attenuated the CA-induced generation of ROS and apoptosis. This effect was accompanied by increased activation of p38 and by decreased activation of extracellular signal-regulated kinase (ERK) as well as activation of c-Jun NH2-terminal kinase (JNK). Moreover, NAC attenuated the CA-induced phosphorylation of p38. Silencing of p38 by siRNA gene knockdown reduced the CA-induced activation of caspase-3. In conclusion, ROS-mediated p38 MAPK activation plays a critical role in CA-induced apoptosis in IMR-32 cells.  相似文献   

18.
This work investigated the capacity of alpha-lipoic acid (LA) and N-acetyl-L-cysteine (NAC) to reduce zinc deficiency-induced oxidative stress, and prevent the activation of nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1), and the cross-talk between both activated cascades through beta-Transducin Repeat-containing Protein (beta-TrCP). IMR-32 cells were incubated in control media or media containing variable concentrations of zinc, without or with 0.5 mM LA or 1 mM NAC. Relative to control and zinc supplemented (15 microM Zn) groups, Hydrogen peroxide (H(2)O(2)) and total oxidant cell concentrations were higher, and total glutathione concentrations were lower in the zinc deficient groups (1.5 and 5 microM Zn). Both, LA and NAC, markedly reduced the increase in cell oxidants and the reduction in glutathione concentrations in the zinc deficient cells. Consistent with this, LA and NAC prevented zinc deficiency-induced activation of the early steps of NF- kappaB (IkappaBalpha phosphorylation) and AP-1 [c-Jun-N-terminal kinase (JNK) and p38 phophorylation] cascades, and the high NF-kappaB- and AP-1-DNA binding activities in total cell extracts. Thus, LA and NAC can reduce the oxidative stress associated with zinc deficiency and the subsequent triggering of NF-kappaB- and AP-1-activation in neuronal cells.  相似文献   

19.
20.
Expression of the neuronal marker 14-3-2 or NSE (neuron-specific enolase) has been studied during in vitro differentiation of cells in culture. The 14-3-2 protein of neuroblastoma cells is immunologically identical with that found in mouse brain extract. The lack of detectable 14-3-2 in cultures of non-neuronal lines shows that this protein, as has been already shown in vivo, is also a specific marker of neurons in vitro. The presence of 14-3-2 in a differentiated hypothalamic clone—but not in its presumptive precursor—indicates selective initial derepression of 14-3-2. Moreover, modulation of the amount of 14-3-2 already present in dividing neuroblastoma cells is related to the confluent phase of growth or morphological differentiation of neuroblasts. Both mechanisms may be related to the mechanisms underlying initial differentiation and subsequent maturation of neurons in vivo. In dividing neuroblastoma cells modulation of the basal level of 14-3-2 is not necessarily associated with expression of the morphological differentiation, but seems generally concomitant with an arrest of cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号