首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major mechanism by which bacteria acquire free or haemoglobin-bound haem involves direct binding to specific outer membrane receptors. Serratia marcescens also secretes a haem-binding protein, HasA, which functions as a haemophore that catches haem and shuttles it to a cell surface specific outer membrane receptor, HasR. We report the isolation and characterization of hasAp , a gene from Pseudomonas aeruginosa. HasAp is an iron-regulated extracellular haem-binding protein that shares about 50% identity with HasA. HasAp is required for P. aeruginosa utilization of haemoglobin iron. It can replace HasA for HasR-dependent haemoblobin acquisition in a system reconstituted in Escherichia coli. HasAp, like HasA, lacks a signal peptide and is secreted by an ABC transporter. These findings show that haemophore-dependent haem acquisition is not unique to S. marcescens .  相似文献   

2.
The major mechanism by which bacteria acquire free or haemoglobin-bound haem involves direct binding of haem to specific outer membrane receptors. Serratia marcescens and Pseudomonas aeruginosa have an alternative system, which involves an extracellular haemophore, HasA, that captures free or haemoglobin-bound haem and shuttles it to a specific cell surface outer membrane receptor, HasR. Both haem-free (apoprotein) and haem-loaded (holoprotein) HasA bind to HasR, evidence for direct protein-protein interactions between HasA and HasR. HasA binding to HasR takes place in a tonB mutant. TonB is thus required for a step subsequent to HasA binding.  相似文献   

3.
TonB is a key protein in active transport of essential nutrients like vitamin B12 and metal sources through the outer membrane transporters of Gram-negative bacteria. This inner membrane protein spans the periplasm, contacts the outer membrane receptor by its periplasmic domain and transduces energy from the cytoplasmic membrane pmf to the receptor allowing nutrient internalization. Whereas generally a single TonB protein allows the acquisition of several nutrients through their cognate receptor, in some species one particular TonB is dedicated to a specific system. Despite a considerable amount of data available, the molecular mechanism of TonB-dependent active transport is still poorly understood. In this work, we present a structural study of a TonB-like protein, HasB dedicated to the HasR receptor. HasR acquires heme either free or via an extracellular heme transporter, the hemophore HasA. Heme is used as an iron source by bacteria. We have solved the structure of the HasB periplasmic domain of Serratia marcescens and describe its interaction with a critical region of HasR. Some important differences are observed between HasB and TonB structures. The HasB fold reveals a new structural class of TonB-like proteins. Furthermore, we have identified the structural features that explain the functional specificity of HasB. These results give a new insight into the molecular mechanism of nutrient active transport through the bacterial outer membrane and present the first detailed structural study of a specific TonB-like protein and its interaction with the receptor.  相似文献   

4.
5.
Numerous bacteria are able to use free and haemoprotein-bound haem as iron sources because of the action of small secreted proteins called haemophores. Haemophores have very high affinity for haem, and can therefore extract haem from the haem-carrier proteins and deliver it to the cells by means of specific cell surface receptors. Haem is then taken up and the empty haemophores are recycled. Here, we report a study of the regulation of the Serratia marcescens has operon which is involved in haemophore-dependent haem acquisition. We characterized two genes encoding proteins homologous to specific ECF sigma and antisigma factors. We showed that they regulate the synthesis of the haemophore-specific outer membrane receptor, HasR, by a signal transduction mechanism similar to the siderophore surface-signalling systems. We also showed the essential role of HasR itself in this process. Using haem-loaded and haem-free haemophore, we identified the stimulus for the HasR-mediated signal transduction as being the binding of the haem-loaded haemophore to HasR. Thus, unlike siderophore-uptake systems, in which the signalling molecule is the transported substrate itself, in the haemophore-dependent haem uptake system the inducer and the transported substrate are different compounds.  相似文献   

6.
Vibrio cholerae has multiple iron transport systems, one of which involves haem uptake through the outer membrane receptor HutA. A hutA mutant had only a slight defect in growth using haemin as the iron source, and we show here that V. cholerae encodes two additional TonB-dependent haem receptors, HutR and HasR. HutR has significant homology to HutA as well as to other outer membrane haem receptors. Membrane fractionation confirmed that HutR is present in the outer membrane. The hutR gene was co-transcribed with the upstream gene ptrB, and expression from the ptrB promoter was negatively regulated by iron. A hutA, hutR mutant was significantly impaired, but not completely defective, in the ability to use haemin as the sole iron source. HasR is most similar to the haemophore-utilizing haem receptors from Pseudomonas aeruginosa and Serratia marcescens. A mutant defective in all three haem receptors was unable to use haemin as an iron source. HutA and HutR functioned with either V. cholerae TonB1 or TonB2, but haemin transport through either receptor was more efficient in strains carrying the tonB1 system genes. In contrast, haemin uptake through HasR was TonB2 dependent. Efficient utilization of haemoglobin as an iron source required HutA and TonB1. The triple haem receptor mutant exhibited no defect in its ability to compete with its Vib- parental strain in an infant mouse model of infection, indicating that additional iron sources are present in vivo. V. cholerae used haem derived from marine invertebrate haemoglobins, suggesting that haem may be available to V. cholerae growing in the marine environment.  相似文献   

7.
TonB is a cytoplasmic membrane protein required for active transport of various essential substrates such as heme and iron siderophores through the outer membrane receptors of Gram-negative bacteria. This protein spans the periplasm, contacts outer membrane transporters by its C-terminal domain, and transduces energy from the protonmotive force to the transporters. The TonB box, a relatively conserved sequence localized on the periplasmic side of the transporters, has been shown to directly contact TonB.While Serratia marcescens TonB functions with various transporters, HasB, a TonB-like protein, is dedicated to the HasR transporter. HasR acquires heme either freely or via an extracellular heme carrier, the hemophore HasA, that binds to HasR and delivers heme to the transporter. Here, we study the interaction of HasR with a HasB C-terminal domain and compare it with that obtained with a TonB C-terminal fragment. Analysis of the thermodynamic parameters reveals that the interaction mode of HasR with HasB differs from that with TonB, the difference explaining the functional specificity of HasB for HasR. We also demonstrate that the presence of the substrate on the extracellular face of the transporter modifies, via enthalpy-entropy compensation, the interaction with HasB on the periplasmic face. The transmitted signal depends on the nature of the substrate. While the presence of heme on the transporter modifies only slightly the nature of interactions involved between HasR and HasB, hemophore binding on the transporter dramatically changes the interactions and seems to locally stabilize some structural motifs. In both cases, the HasR TonB box is the target for those modifications.  相似文献   

8.
The TonB protein plays a key role in the energy-coupled transport of iron siderophores, of vitamin B12, and of colicins of the B-group across the outer membrane of Escherichia coli. In order to obtain more data about which of its particular amino acid sequences are necessary for TonB function, we have cloned and sequenced the tonB gene of Serratia marcescens. The nucleotide sequence predicts an amino acid sequence of 247 residues (Mr 27,389), which is unusually proline-rich and contains the tandem sequences (Glu-Pro)5 and (Lys-Pro)5. In contrast to the TonB proteins of E. coli and Salmonella typhimurium, translation of the S. marcescens TonB protein starts at the first methionine residue of the open reading frame, which is the only amino acid removed during TonB maturation and export. Only the N-terminal sequence is hydrophobic, suggesting its involvement in anchoring the TonB protein to the cytoplasmic membrane. The S. marcescens tonB gene complemented an E. coli tonB mutant with regard to uptake of iron siderophores, and sensitivity to phages T1 and phi 80, and to colicins B and M. However, an E. coli tonB mutant transformed with the S. marcescens tonB gene remained resistant to colicins Ia and Ib, to colicin B derivatives carrying the amino acid replacements Val/Ala and Val/Gly at position 20 in the TonB box, and they exhibited a tenfold lower activity with colicin D. In addition, the S. marcescens TonB protein did not restore T1 sensitivity of an E. coli exbB tolQ double mutant, as has been found for the overexpressed E. coli TonB protein, indicating a lower activity of the S. marcescens TonB protein. Although the S. marcescens TonB protein was less prone to proteolytic degradation, it was stabilized in E. coli by the ExbBD proteins. In E. coli, TonB activity of S. marcescens depended either on the ExbBD or the TolQR activities.  相似文献   

9.
10.
11.
The Serratia marcescens haemophore HasA is secreted by an ABC exporter comprising three envelope proteins. The ABC protein (ATP-binding cassette) HasD and the MFP protein (membrane fusion protein) HasE but not the outer membrane component have been isolated previously. In Escherichia coli , TolC, the outer membrane component of the haemolysin transporter, can form a hybrid exporter with HasD and HasE. This hybrid secretes HasA and the very similar metalloproteases from S. marcescens and Erwinia chrysanthemi . By analogy, the genuine exporter was predicted to secrete metalloproteases. The hasF gene was thus cloned from S. marcescens into an E. coli tolC mutant carrying hasD and hasE genes, by screening for a proteolytic phenotype on skimmed-milk plates. hasF encodes a protein sharing 74% identity with the E. coli TolC protein. Anti-TolC antibodies cross-reacted with a protein with an apparent molecular weight of 53 kDa in E. coli expressing hasF and in S. marcescens . hasF is unlinked to the has cluster and, unlike the has operon, is not iron regulated. hasF complements some of the tolC phenotypes, including drug- and detergent sensitivities and haemolysin secretion but not colicin E1 uptake. This suggests that the various functions of TolC could correspond to distinct domains on the protein.  相似文献   

12.
Cells growing in aerobic environments have developed intricate strategies to overcome the scarcity of iron, an essential nutrient. In Gram-negative bacteria, high-affinity iron acquisition requires outer membrane-localized proteins that bind iron chelates at the cell surface and promote their uptake. Transport of bound chelates across the outer membrane depends upon TonB–ExbB–ExbD, a cytoplasmic membrane-localized complex that transduces energy from the proton motive force to high-affinity receptors in the outer membrane. Upon ligand binding to iron chelate receptors, conformational changes are induced, some of which are detected in the periplasm. These structural alterations signal the ligand-loaded status of the receptor and, therefore, the requirement for TonB-dependent energy transduction. Thus, TonB interacts preferentially and directly with ligand-loaded receptors. Such a mechanism ensures the productive use of cellular energy to drive active transport at the outer membrane.  相似文献   

13.
Abstract The current model of TonB-dependent colicin transport through the outer membrane of Escherichia coli proposes initial binding to receptor proteins, vectorial release from the receptors and uptake into the periplasm from where the colicins, according to their action, insert into the cytoplasmic membrane or enter the cytoplasm. The uptake is energy-dependent and the TonB protein interacts with the receptors as well as with the colicins. In this paper we have studied the uptake of colicins B and Ia, both pore-forming colicins, into various tonB point mutants. Colicin Ia resistance of the tonB mutant (G186D, R204H) was consistent with a defective Cir receptor-TonB interaction while colicin Ia resistance of E. coli expressing TonB of Serratia marcescens , or TonB of E. coli carrying a C-terminal fragment of the S. marcescens TonB, seemed to be caused by an impaired colicin Ia-TonB interaction. In contrast, E. coli tonB (G174R, V178I) was sensitive to colicin Ia and resistant to colicin B unless TonB, ExbB and ExbD were overproduced which resulted in colicin B sensitivity. The differential effects of tonB mutations indicate differences in the interaction of TonB with receptors and colicins.  相似文献   

14.
Many gram-negative bacteria have specific outer membrane receptors for free heme, hemoproteins, and hemophores. Heme is a major iron source and is taken up intact, whereas hemoproteins and hemophores are not transported: the iron-containing molecule has to be stripped off at the cell surface, with only the heme moiety being taken up. The Serratia marcescens hemophore-specific outer membrane receptor HasR can transport either heme itself or heme bound to the hemophore HasA. This second mechanism is much more efficient and requires a higher TonB-ExbB-ExbD (TonB complex) concentration than does free or hemoglobin-bound heme uptake. This requirement for more of the TonB complex is associated with a higher energy requirement. Indeed, the sensitivity of heme-hemophore uptake to the protonophore carbonyl cyanide m-chlorophenyl hydrazone is higher than that of heme uptake from hemoglobin. We show that a higher TonB complex concentration is required for hemophore dissociation from the receptor. This dissociation is concomitant with heme uptake. We propose that increasing the TonB complex concentration drives more energy to the outer membrane receptor and speeds up the release of empty hemophores, which, if they remained on receptors, would inhibit heme transport.  相似文献   

15.
Zhao Q  Poole K 《Journal of bacteriology》2002,184(6):1503-1513
Siderophore-mediated iron transport in Pseudomonas aeruginosa is dependent upon the cytoplasmic membrane-associated TonB1 energy coupling protein for activity. To assess the functional significance of the various regions of this molecule and to identify functionally important residues, the tonB1 gene was subjected to site-directed mutagenesis, and the influence on iron acquisition was determined. The novel N-terminal extension of TonB1, which is absent in all other examples of TonB, was required for TonB1 activity in both P. aeruginosa and Escherichia coli. Appending it to the N terminus of the nonfunctional (in P. aeruginosa) Escherichia coli TonB protein (TonB(Ec)) rendered TonB(Ec) weakly active in P. aeruginosa and did not compromise the activity of this protein in E. coli. Elimination of the membrane-spanning, presumed membrane anchor sequence of TonB1 abrogated TonB1 activity in P. aeruginosa and E. coli. Interestingly, however, a conserved His residue within the membrane anchor sequence, shown to be required for TonB(Ec) function in E. coli, was shown here to be essential for TonB1 activity in E. coli but not in P. aeruginosa. Several mutations within the C-terminal end of TonB1, within a region exhibiting the greatest similarity to other TonB proteins, compromised a TonB1 contribution to iron acquisition in both P. aeruginosa and E. coli, including substitutions at Tyr264, Glu274, Lys278, and Asp304. Mutations at Pro265, Gln293, and Val294 also impacted negatively on TonB1 function in E. coli but not in P. aeruginosa. The Asp304 mutation was suppressed by a second mutation at Glu274 of TonB1 but only in P. aeruginosa. Several TonB1-TonB(Ec) chimeras were constructed, and assessment of their activities revealed that substitutions at the N or C terminus of TonB1 compromised its activity in P. aeruginosa, although chimeras possessing an E. coli C terminus were active in E. coli.  相似文献   

16.
The TonB-dependent complex of Gram-negative bacteria couples the inner membrane proton motive force to the active transport of iron.siderophore and vitamin B(12) across the outer membrane. The structural basis of that process has not been described so far in full detail. The crystal structure of the C-terminal domain of TonB from Escherichia coli has now been solved by multiwavelength anomalous diffraction and refined at 1.55-A resolution, providing the first evidence that this region of TonB (residues 164-239) dimerizes. Moreover, the structure shows a novel architecture that has no structural homologs among any known proteins. The dimer of the C-terminal domain of TonB is cylinder-shaped with a length of 65 A and a diameter of 25 A. Each monomer contains three beta strands and a single alpha helix. The two monomers are intertwined with each other, and all six beta-strands of the dimer make a large antiparallel beta-sheet. We propose a plausible model of binding of TonB to FhuA and FepA, two TonB-dependent outer-membrane receptors.  相似文献   

17.
Nickel is a cofactor for various microbial enzymes, yet as a trace element, its scavenging is challenging. In the case of the pathogen Helicobacter pylori, nickel is essential for the survival in the human stomach, because it is the cofactor of the important virulence factor urease. While nickel transport across the cytoplasmic membrane is accomplished by the nickel permease NixA, the mechanism by which nickel traverses the outer membrane (OM) of this Gram-negative bacterium is unknown. Import of iron-siderophores and cobalamin through the bacterial OM is carried out by specific receptors energized by the TonB/ExbB/ExbD machinery. In this study, we show for the first time that H. pylori utilizes TonB/ExbB/ExbD for nickel uptake in addition to iron acquisition. We have identified the nickel-regulated protein FrpB4, homologous to TonB-dependent proteins, as an OM receptor involved in nickel uptake. We demonstrate that ExbB/ExbD/TonB and FrpB4 deficient bacteria are unable to efficiently scavenge nickel at low pH. This condition mimics those encountered by H. pylori during stomach colonization, under which nickel supply and full urease activity are essential to combat acidity. We anticipate that this nickel scavenging system is not restricted to H. pylori, but will be represented more largely among Gram-negative bacteria.  相似文献   

18.
A novel iron(III) transport system of Serratia marcescens, named SFU, was cloned and characterized in Escherichia coli. Iron acquisition by this system differed from that by E. coli and related organisms. No siderophore production and no receptor protein related to the SFU system could be detected. In addition, iron uptake was independent of the TonB and ExbB functions. On the cloned 4.8-kilobase sfu fragment, two loci encoding a 36-kilodalton (kDa) protein and three proteins with molecular masses of 40, 38, and 34 kDa were identified; the 40-kDa protein represents a precursor form. Furthermore, chromosomally encoded functions of E. coli were required for the uptake of iron by this system.  相似文献   

19.
Vibrio cholerae was found to have two sets of genes encoding TonB, ExbB and ExbD proteins. The first set ( tonB1, exbB1, exbD1 ) was obtained by complementation of a V. cholerae tonB mutant. In the mutant, a plasmid containing these genes permitted transport via the known V. cholerae high-affinity iron transport systems, including uptake of haem, vibriobactin and ferrichrome. When chromosomal mutations in exbB1 or exbD1 were introduced into a wild-type V. cholerae background, no defect in iron transport was noted, indicating the existence of additional genes that can complement the defect in the wild-type background. Another region of the V. cholerae chromosome was cloned that encoded a second functional TonB/Exb system ( tonB2, exbB2, exbD2 ). A chromosomal mutation in exbB2 also failed to exhibit a defect in iron transport, but a V. cholerae strain that had chromosomal mutations in both the exbB1 and exbB2 genes displayed a mutant phenotype similar to that of an Escherichia coli tonB mutant. The genes encoding TonB1, ExbB1, ExbD1 were part of an operon that included three haem transport genes ( hutBCD ), and all six genes appeared to be expressed from a single Fur-regulated promoter upstream of tonB1 . A plasmid containing all six genes permitted utilization of haem by an E. coli strain expressing the V. cholerae haem receptor, HutA. Analysis of the hut genes indicated that hutBCD, which are predicted to encode a periplasmic binding protein (HutB) and cytoplasmic membrane permease (HutC and HutD), were required to reconstitute the V. cholerae haem transport system in E. coli. In V. cholerae , the presence of hutBCD stimulated growth when haemin was the iron source, but these genes were not essential for haemin utilization in V. cholerae .  相似文献   

20.
The TonB protein transduces energy from the proton gradient across the cytoplasmic membrane of Gram-negative bacteria to TonB-dependent outer membrane receptors. It is a critically important protein in iron uptake, and deletion of this protein is known to decrease virulence of bacteria in animal models. This system has been used for Trojan horse antibiotic delivery. Here, we describe the high-resolution solution structure of Escherichia coli TonB residues 103-239 (TonB-CTD). TonB-CTD is monomeric with an unstructured N terminus (103-151) and a well structured C terminus (152-239). The structure contains a four-stranded antiparallel beta-sheet packed against two alpha-helices and an extended strand in a configuration homologous to the C-terminal domain of the TolA protein. Chemical shift perturbations to the TonB-CTD (1)H-(15)N HSCQ spectrum titrated with TonB box peptides modeled from the E.coli FhuA, FepA and BtuB proteins were all equivalent, indicating that all three peptides bind to the same region of TonB. Isothermal titration calorimetry measurements demonstrate that TonB-CTD interacts with the FhuA-derived peptide with a K(D)=36(+/-7) microM. On the basis of chemical shift data, the position of Gln160, and comparison to the TolA gp3 N1 complex crystal structure, we propose that the TonB box binds to TonB-CTD along the beta3-strand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号