首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
J Kuhla  J Oelze 《Journal of bacteriology》1988,170(11):5325-5329
Azotobacter vinelandii was grown diazotrophically in chemostat cultures limited by sucrose, citrate, or acetate. Specific activities of cellular oxygen consumption (qO2) and nitrogenase (acetylene reduction) were measured in situ at different dilution rates (D, representing the specific growth rate mu at steady state). Sucrose-limited cultures exhibited linear relationships between qO2 and D, each of which, however, depended on the dissolved oxygen concentration in the range of 12 to 192 microM O2. From these plots, qO2 required for maintenance processes (mO2) were extrapolated. mO2 values did not increase linearly with increasing dissolved oxygen concentrations. With citrate- or acetate-limited cultures qO2 also depended on D. At 108 microM O2, however, qO2 and mO2 of the latter cultures were significantly lower than those of sucrose-limited cultures. Specific rates of acetylene reduction increased linearly with D, irrespective of the type of limitation and of the dissolved oxygen concentration (J. Kuhla and J. Oelze, Arch. Microbiol. 149:509-514, 1988). The reversible switch-off of nitrogenase activity under oxygen stress also depended on D and was independent of qO2, mO2, or the limiting substrate. Increased switch-off effects resulting from increased stress heights could be compensated for by increasing D. Since D represents not only the supply of the carbon source but also the supply of electrons and energy, the results suggest that the flux of electrons to the nitrogenase complex, rather than qO2, stabilizes nitrogenase activity against oxygen inactivation in aerobically growing A. vinelandii.  相似文献   

2.
When the exhaustion of sucrose or sulfate or the induction of encystment (by incubation in 0.2% beta-hydroxybutyrate) leads to termination of growth in Azotobacter vinelandii batch cultures, the nitrogenase levels in the organisms decreased rapidly, whereas glutamate synthase and glutamine synthetase levels remained unaltered. Glutamate dehydrogenase activities were low during the whole culture cycle, indicating that ammonia assimilation proceeds via glutamine. Toward depletion of sucrose or during induction of encystment, slight secretion of ammonia with subsequent reabsorption was occasionally observed, whereas massive ammonia excretion occurred when the sulfate became exhausted. The extracellular ammonia levels were paralleled by changes in the glutamine synthetase activity. The inactivation of the nitrogenase is explained as a result of rising oxygen tension, a consequence of a metabolic shift-down (reduced respiration) that occurs in organisms entering the stationary phase.  相似文献   

3.
Azotobacter vinelandii growing in oxygen controlled chemostat culture was subjected to sudden increases of ambient oxygen concentrations (oxygen stress) after adaptation to different oxygen concentrations adjustable with air (100% air saturation corresponds to 225±14 M O2). Inactivations of cellular nitrogenase during stress (switch off) as well as after release of stress (switch on) were evaluated in vivo as depending on stress duration and stress height (pO2). Switch off was at its final extent within 1 min of stress. The extent of switch off, however, increased with stress height and was complete at pO2 between 8–10% air saturation irrespective of different oxygen concentrations the organisms were adapted to before stress, indicating that switch off is adaptable. Inactivation of nitrogenase measurable after switch on represents irreversible loss of activity. Irreversible inactivation was at its characteristic level within less than 3 min of stess and at a pO2 of less than 1% air saturation. The level of irreversible inactivation increased linearly with the oxygen concentration the organisms were adapted to before stress. Thus adaptation of cells to increased oxygen concentrations did not prevent increased susceptibility of nitrogenase to irreversible inhibition during oxygen stress. The fast response of irreversible inactivation at low stress heights suggests that it takes place already during stress. Thus switch off comprised both a reversible and an irreversible phase. The data showed that reversible inactivation of nitrogenase was less susceptible to oxygen stress than irreversible inactivation. A basic pre-requisite of the hypothesis of respiratory protection of nitrogenase, i.e. the proposed relationship between respiratory activities and the protection of nitrogenase from irreversible inhibition by oxygen, was not supported by the results of this report.  相似文献   

4.
Preparations of nitrogenase from Azotobacter vinelandii show an ATP synthetase activity when incubated in the presence of ADP, phosphate, ammonium chloride and an oxidizing agent. The synthesis is linked to an oxidation-reduction and the activity parallels nitrogenase activity through purification and in a step gradient sedimentation. The reductive dephosphorylation of nitrogen fixation may possibly be reversed to yield an oxidative phosphorylation.  相似文献   

5.
6.
7.
Respiratory protection of nitrogenase in Azotobacter vinelandii   总被引:5,自引:0,他引:5  
  相似文献   

8.
Meniscus depletion sedimentation equilibrium ultracentrifuge experiments were performed on purified MoFe and Fe proteins of Azotobacter vinelandii. The MoFe protein was found to have a molecular weight of 245,000, using an experimentally confirmed partial specific volume of 0.73. The MoFe protein formed one band on sodium dodecyl sulfate gel electrophoresis and had a subunit molecular weight of 56,000. The subunit molecular weight from ultracentrifuge experiments in 8 M urea was 61,000. The molecular weight of the Fe protein was calculated to be 60,500 in meniscus depletion experiments. Similar experiments in 8 M urea solvent indicated a subunit molecular weight of 30,000. A subunit molecular weight of 33,000 was obtained from sodium dodecyl sulfate gel electrophoresis experiments.  相似文献   

9.
10.
Azotobacter vinelandii was grown diazotrophically at different dissolved oxygen concentrations (in the range of 3 to 216 microM) in sucrose-limited continuous culture. The specific nitrogenase activity, measured on the basis of acetylene reduction in situ, was dependent solely on the growth rate and was largely independent of oxygen and sucrose concentration. FeMo (Av1) and Fe (Av2) nitrogenase proteins were quantified after Western blotting (immunoblotting). When the cultures were grown at a constant dilution rate (D, representing the growth rate, mu) of 0.15.h-1, the cellular levels of both proteins were constant regardless of different dissolved oxygen concentrations. The same was true when the organisms were grown at D values above 0.15.h-1. At a lower growth rate (D = 0.09.h-1), however, and at lower oxygen concentrations cellular levels of both nitrogenase proteins were decreased. This means that catalytic activities of nitrogenase proteins were highest at low oxygen concentrations, but at higher oxygen concentrations they increased with growth rate. Under all conditions tested, however, the Av1:Av2 molar ratio was 1:(1.45 +/- 0.12). Cellular levels of flavodoxin and FeS protein II were largely constant as well. In order to estimate turnover of nitrogenase proteins in the absence of protein synthesis, chloramphenicol was added to cultures adapted to 3 and 216 microM oxygen, respectively. After 2 h of incubation, no significant decrease in the cellular levels of Av1 and Av2 could be observed. This suggests that oxygen has no significant effect on the breakdown of nitrogenase proteins.  相似文献   

11.
12.
K L Hadfield  W A Bulen 《Biochemistry》1969,8(12):5103-5108
  相似文献   

13.
In Azotobacter vinelandii cells, the short-term inhibition of nitrogenase activity by NH4Cl was found to depend on several factors. The first factor is the dissolved oxygen concentration during the assay of nitrogenase. When cells are incubated with low concentrations of oxygen, nitrogenase activity is low and ammonia inhibits strongly. With more oxygen, nitrogenase activity increases. Cells incubated with an optimum amount of oxygen have maximum nitrogenase activity, and the extent of inhibition by ammonia is small. With higher amounts of oxygen, the nitrogenase activity of the cells is decreased and strongly inhibited by ammonia. The second factor found to be important for the inhibition of nitrogenase activity by NH4Cl was the pH of the medium. At a low pH, NH4+ inhibits more strongly than at a higher pH. The third factor that influenced the extent of ammonia inhibition was the respiration rate of the cells. When cells are grown with excess oxygen, the respiration rate of the cells is high and inhibition of nitrogenase activity by ammonia is small. Cells grown under oxygen-limited conditions have a low respiration rate and NH4Cl inhibition of nitrogenase activity is strong. Our results explain the contradictory reports described in the literature for the NH4Cl inhibition of nitrogenase in A. vinelandii.  相似文献   

14.
15.
16.
Nitrogenase activity of washed Azotobacter vinelandii cells was enhanced by the addition of Ca2+ and Mg2+, and the enhancement increased with the O2 concentration. In assays provided with a level of O2 that was initially supraoptimal and inhibitory to nitrogenase activity, the addition of Ca2+ or Mg2+ affected both the maximum respiration rate (Vmax) of the cells and the apparent affinity [KS(O2)] of cell respiration for O2. Changes in these parameters correlated with changes in nitrogenase activity. Aeration-dependent increases in Vmax and KS(O2) were inhibited by rifampin and chloramphenicol and were also observed in ammonium-grown cultures.  相似文献   

17.
Isolation of a new vanadium-containing nitrogenase from Azotobacter vinelandii   总被引:22,自引:0,他引:22  
A new nitrogenase from Azotobacter vinelandii has been isolated and characterized. It consists of two proteins, one of which is almost identical with the Fe protein (component 2) of the conventional enzyme. The second protein (Av1'), however, has now been isolated and shown to differ completely from conventional component 1, i.e., the MoFe protein. This new protein consists of two polypeptides with a total molecular weight of around 200,000. In place of Mo and Fe it contains V and Fe with a V:Fe ratio of 1:13 +/- 3. The ESR spectrum of Av1' also differs from conventional component 1 in that lacks the g = 3.6 resonance that arises from the FeMo cofactor but contains an axial signal with gav less than 2 as well as inflections in the g = 4-6 region possibly arising from an S = 3/2 state. This new enzyme can reduce dinitrogen, protons, and acetylene but is only able to utilize 10-15% of its electrons for the reduction of acetylene.  相似文献   

18.
Hydrazine has been tested as a substrate and inhibitor of nitrogenase from Azotobacter vinelandii. It is a linear noncompetitive inhibitor of acetylene reduction, with Kil = Kis = 80 mM at pH 8.0. Carbon monoxide is a linear noncompetitive inhibitor of hydrazine reduction with Kii = Kis = 2 × 10?4atm. The inhibition of acetylene reduction by hydrazine is unaffected by the presence of hydrogen, and hydrogen does not inhibit the reduction of hydrazine. Hydrazine can completely suppress hydrogen evolution, while not inhibiting phosphate hydrolysis. The apparent Km for hydrazine reduction varies with pH, reaching a limiting value of about 25 mM at high pH. The apparent Ki for hydrazine inhibition of hydrogen evolution reaches a similar limiting value at high pH. By varying the concentration of ATP it is possible to alter the relative allocation of electrons to acetylene or hydrazine. Hydrazine is a relatively more potent inhibitor of acetylene reduction at low levels of ATP. It is concluded that hydrazine is able to react effectively with a less reduced state of the enzyme from A. vinelandii than is acetylene or dinitrogen.  相似文献   

19.
Thiol reactivity of the nitrogenase Fe-protein from Azotobacter vinelandii   总被引:8,自引:0,他引:8  
A procedure has been developed to examine some of the functional roles of the 14 cysteinyl residues in the nitrogenase Fe-protein (Av2) from Azotobacter vinelandii. The reduced form of Av2 was alkylated with iodo[2-14C]acetic acid under a variety of experimental conditions, e.g. reaction in the presence of nucleotides, alpha,alpha'-dipyridyl and nucleotides, or denaturants. The labeled cysteinyl residues were identified and quantified using an analytical DEAE-Sepharose ion exchange chromatography peptide mapping technique based upon the known amino acid sequence (Hausinger, R. P., and Howard, J. B. (1982) J. Biol. Chem. 257, 2483-2490). From the results of the labeling experiments, the following features of the Av2 structure have been proposed. 1) Av2 contains no disulfides, hyperreactive thiols, or surface thiols as defined by reaction with iodoacetic acid. 2) Cysteines 97 and 132 are the probable ligands for the Av2 Fe:S center which is bound symmetrically between subunits. 3) MgATP partially protects cysteine 85 from carboxymethylation by iodoacetic acid and may be part of the nucleotide-binding site. 4) Of the five nonligand thiols only cysteines 5 and 184 are completely alkylated when Av2 is denatured in hexamethylphosphoramide, whereas all five nonligand thiols appear to rapidly exchange at the Fe:S center if the protein is denatured in the absence of alkylating reagents. 5) Both Av2 and apo-Av2 appear to undergo a reversible conformational change upon binding MgATP.  相似文献   

20.
The quaternary structure of the Mo-Fe-protein from Azotobacter vinelandii has been studied by electron microscopy. A model of the molecule of the Mo-Fe-protein has been proposed: two alpha subunits are displaced relative to two beta subunits along a twofold axis, so the molecule can be characterized by the point-group pseudosymmetry 222. Computer averaging of the images showed that one of the projections of the molecule could be characterized by twofold rotational symmetry. Micrographs of nitrogenase recombined complex (Mo-Fe-protein + Fe-protein) have been obtained. They showed particles close in size and form to the Mo-Fe-protein molecule. Therefore, it has been proposed that the Fe-protein could be situated in the central cavity of Mo-Fe-protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号