首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To clarify the mechanism of apoptosis of the macrophage-like cell line RAW264.7 induced by cationic liposomes, we focused on the mitochondria and investigated the changes in mitochondrial membrane potential and the release of cytochrome c following treatment of cationic liposomes composed of stearylamine (SA-liposomes). SA-liposomes induced mitochondrial membrane depolarization and also the release of cytochrome c from mitochondria. Caspase-3 was also activated by SA-liposome treatment. Pretreatment of cells with N-acetylcysteine, a scavenger of reactive oxygen species (ROS), conferred resistance to the induction of the membrane depolarization, cytochrome c release, and caspase-3 activation by SA-liposomes. These results indicated that SA-liposomes caused the apoptosis in RAW264.7 cells through the mitochondrial pathway, and ROS generation was required for this phenomenon.  相似文献   

2.
Mitochondrial fission ensures organelle inheritance during cell division and participates in apoptosis. The fission protein hFis1 triggers caspase-dependent cell death, by causing the release of cytochrome c from mitochondria. Here we show that mitochondrial fission induced by hFis1 is genetically distinct from apoptosis. In cells lacking the multidomain proapoptotic Bcl-2 family members Bax and Bak (DKO), hFis1 caused mitochondrial fragmentation but not organelle dysfunction and apoptosis. Similarly, a mutant in the intermembrane region of hFis1-induced fission but not cell death, further dissociating mitochondrial fragmentation from apoptosis induction. Selective correction of the endoplasmic reticulum (ER) defect of DKO cells restored killing by hFis1, indicating that death by hFis1 relies on the ER gateway of apoptosis. Consistently, hFis1 did not directly activate BAX and BAK, but induced Ca(2+)-dependent mitochondrial dysfunction. Thus, hFis1 is a bifunctional protein that independently regulates mitochondrial fragmentation and ER-mediated apoptosis.  相似文献   

3.
Mitochondrial membrane permeabilization (MMP) is considered as the “point-of-no-return” in numerous models of programmed cell death. Indeed, mitochondria determine the intrinsic pathway of apoptosis, and play a major role in the extrinsic route as well. MMP affects the inner and outer mitochondrial membranes (IM and OM, respectively) to a variable degree. OM permeabilization culminates in the release of proteins that normally are confined in the mitochondrial intermembrane space (IMS), including caspase activators (e.g. cytochrome c) and caspase-independent death effectors (e.g. apoptosis-inducing factor). Partial IM permeabilization disrupts mitochondrial ion and volume homeostasis and dissipates the mitochondrial transmembrane potential (ΔΨm). The assessment of early mitochondrial alterations allows for the identification of cells that are committed to die but have not displayed yet the apoptotic phenotype. Several techniques to measure MMP by cytofluorometry and fluorescence microscopy have been developed. Here, we summarize the currently available methods for the detection of MMP, and provide a comparative analysis of these techniques.  相似文献   

4.
Mitochondria play a pivotal role in the regulation of apoptosis. An imbalance in apoptosis can lead to disease. Unscheduled apoptosis has been linked to neurodegeneration while inhibition of apoptosis can cause cancer. An early and key event during apoptosis is the release of factors from mitochondria. In apoptosis the mitochondrial outer membrane becomes permeable, leading to release of apoptogenic factors into the cytosol. One such factor, cytochrome c, is an electron carrier of the respiratory chain normally trapped within the mitochondrial intermembrane space. Many apoptotic studies investigate mitochondrial outer membrane permeabilization (MOMP) by monitoring the release of cytochrome c. Here, we describe three reliable techniques that detect cytochrome c release from mitochondria, through subcellular fractionation or immunocytochemistry and fluorescence microscopy, or isolated mitochondria and recombinant Bax and t-Bid proteins in vitro. These techniques will help to identify mechanisms and characterize factors regulating MOMP.  相似文献   

5.
6.
BACKGROUND: Until now, the simultaneous analysis of several parameters during apoptosis, including DNA content and mitochondrial membrane potential (DeltaPsi), has not been possible because of the spectral characteristics of the commonly used dyes. Using polychromatic flow cytometry based upon multiple laser and UV lamp excitation, we have characterized cells with different DeltaPsi during apoptosis. METHODS: U937 cells were treated with the flavonoid quercetin (Qu) and stained with JC-1 to detect DeltaPsi, propidium iodide (PI) for cell viability, Hoechst 33342 for DNA content, Annexin V conjugated with Alexa Fluor-647 for detection of phosphatidilserine (PS) exposure, marker of early apoptosis, or Mitotracker Deep Red for the determination of mitochondrial mass. RESULTS: Treatment with Qu provoked the onset of three cell populations with different DeltaPsi: (1) healthy cells, with normal DeltaPsi, DNA content and physical parameters, high mitochondrial mass, PI- and Annexin V-negative; (2) cells with intermediate DeltaPsi and normal DNA content, but with physical parameters typical of apoptotic cells and low mitochondrial mass; most of them were PI+ and Annexin V+; (3) cells with collapsed DeltaPsi that had low mitochondrial mass and were Annexin-V+, PI+; half of them showed diminished DNA content. Similar results, i.e. the presence of cells with intermediate DeltaPsi, were observed in other models of apoptosis. CONCLUSIONS: During Qu-induced apoptosis, loss of DeltaPsi, PS exposure, and decrease of mitochondrial mass are early events that precede permeability to PI and loss of DNA. Populations of cells with different DeltaPsi, as revealed by flow cytometry after JC-1 staining, differed also for other parameters associated to apoptosis. Thus, the simultaneous analysis of several parameters by polychromatic flow cytometry permits a better identification of many stages of cell death, and, more in general, allows to evaluate the eventual heterogenic sensibility of the population under study to a given compound.  相似文献   

7.
Upon apoptotic stimuli, lysosomal proteases, including cathepsins and chymotrypsin, are released into cytosol due to lysosomal membrane permeabilization (LMP), where they trigger apoptosis via the lysosomal-mitochondrial pathway of apoptosis. Herein, the mechanism of LMP was investigated. We found that caspase 8-cleaved Bid (tBid) could result in LMP directly. Although Bax or Bak might modestly enhance tBid-triggered LMP, they are not necessary for LMP. To study this further, large unilamellar vesicles (LUVs), model membranes mimicking the lipid constitution of lysosomes, were used to reconstitute the membrane permeabilization process in vitro. We found that phosphatidic acid (PA), one of the major acidic phospholipids found in lysosome membrane, is essential for tBid-induced LMP. PA facilitates the insertion of tBid deeply into lipid bilayers, where it undergoes homo-oligomerization and triggers the formation of highly curved nonbilayer lipid phases. These events induce LMP via pore formation mechanisms because encapsulated fluorescein-conjugated dextran (FD)-20 was released more significantly than FD-70 or FD-250 from LUVs due to its smaller molecular size. On the basis of these data, we proposed tBid-PA interactions in the lysosomal membranes form lipidic pores and result in LMP. We further noted that chymotrypsin-cleaved Bid is more potent than tBid at binding to PA, inserting into the lipid bilayer, and promoting LMP. This amplification mechanism likely contributes to the culmination of apoptotic signaling.  相似文献   

8.
9.
Procaspase-9 is the zymogen form of one of the apoptosis initiators, caspase-9. Its cellular location may differ depending on the cell type; it is found throughout the cytosol, although some of it may be associated with the mitochondria. Procaspase-9 relocates from the cytosol to the mitochondria shortly after the triggering of apoptosis in rat hepatocytes. We investigated whether the mitochondrial protein import machineries import procaspase-9. The combined results of protein import analyses, mitochondrial fractionation and protease treatments of intact and swollen mitochondria imply that procaspase-9 attaches to the outer surface of the mitochondrial outer membrane.  相似文献   

10.
Cytotoxic T lymphocytes (CTL) can destroy target cells via the Fas-mediated pathway or the granule-mediated pathway. We used Fas-negative target cells to examine for target-cell reduction in mitochondrial membrane potential (DeltaPsi(m)) induced by intact CTL via the granule-mediated pathway. We find that reduction in DeltaPsi(m) is an early step in Fas-independent CTL killing of target cells that precedes phosphatidyl serine translocation, cytosolic protein release, or loss of plasma membrane integrity. Target-cell reduction in DeltaPsi(m) and cytoplasmic protein release in Fas-independent CTL killing were inhibited by N-carbobenzoxy-Ala-Pro-Phe chloromethyl ketone, but not by caspase inhibitors N-carbobenzoxy-Val-Ala-Asp fluoromethyl ketone (z-VAD-fmk) or N-carbobenzoxy-Asp-Glu-Val-Asp fluoromethyl ketone (z-DEVD-fmk). This contrasts with Fas-mediated apoptosis, in which the reduction in DeltaPsi(m) can be inhibited by z-VAD-fmk or z-DEVD-fmk. Assessing the changes in target-cell DeltaPsi(m) can provide for a sensitive and rapid means with which to monitor CTL activity.  相似文献   

11.
Permeability of the mitochondrial membrane to bicarbonate ions.   总被引:1,自引:0,他引:1       下载免费PDF全文
Osmotic-swelling techniques show that HCO3- enters mitochondria by an electrogenic process, effectively HCO3- uniport, under non-energized conditions. This mode of translocation accounts for previous reports of non-entry of HCO3- in experiments with energy-linked Ca2+ uptake. The effects of HCO3- on mitochondrial respiration are reported and discussed.  相似文献   

12.
15-Deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) is a naturally occurring cyclopentenone metabolite of PGD(2) that possesses both peroxisome proliferator-activated receptor gamma (PPAR-gamma)-dependent and PPAR-gamma-independent anti-inflammatory properties. Recent studies suggest that cyclopentenone PGs may play a role in the down-regulation of inflammation-induced immune responses. In this study, we report that 15d-PGJ(2) as well as synthetic PPAR-gamma agonists inhibit lymphocyte proliferation. However, only 15d-PGJ(2), but not the specific PPAR-gamma activators, induce lymphocyte apoptosis. We found that blocking of the death receptor pathway in Fas-associated death domain(-/-) or caspase-8(-/-) Jurkat T cells has no effect on apoptosis induction by 15d-PGJ(2). Conversely, overexpression of Bcl-2 or Bcl-x(L) completely inhibits the initiation of apoptosis, indicating that 15d-PGJ(2)-mediated apoptosis involves activation of the mitochondrial pathway. In line with these results, 15d-PGJ(2) induces mitochondria disassemblage as demonstrated by dissipation of mitochondrial transmembrane potential (Deltapsi(m)) and cytochrome c release. Both of these events are partially inhibited by the broad spectrum caspase inhibitor benzyloxycarbonil-Val-Ala-Asp-fluoromethylketone, suggesting that caspase activation may amplify the mitochondrial alterations initiated by 15d-PGJ(2). We also demonstrate that 15d-PGJ(2) potently stimulates reactive oxygen species production in Jurkat T cells, and Deltapsi(m) loss induced by 15d-PGJ(2) is prevented by the reactive oxygen species scavenger N-acetyl-L-cysteine. In conclusion, our data indicate that cyclopentenone PGs like 15d-PGJ(2) may modulate immune responses even independent of PPAR-gamma by activating the mitochondrial apoptosis pathway in lymphocytes in the absence of external death receptor signaling.  相似文献   

13.
Ganglioside-induced apoptosis in mouse thymocytes was shown to be caspase-dependent, mitochondria being involved in the apoptosis-signaling pathway of GM1-, GD3-and GT1b-stimulated cells. According to their role in caspase-8-induced signaling cascades in thymocytes, these gangliosides can be divided into two groups, viz., those activating cell apoptosis by a mitochondrial route without the involvement of death receptors and caspase-8 (the so-called mitochondrial signaling cascade) (GD3), and those activating this process by receptor-mediated and mitochondrial routes (GM1 and GT1b). Anti-Fas antibodies that activate apoptosis of thymocytes by receptor pathway were used as a reference system. Cytofluorimetric studies of chromosomal DNA fragmentation revealed that effector caspase-3 is involved in apoptotic signaling cascades triggered by all the gangliosides under study. At the same time, the caspase-3 inhibitor Z-DEVD-FMK abolished the ganglioside-and antibody-induced depolarization of thymocyte mitochondrial membranes by a receptor-dependent route either partly (GM1 and GT1b) or completely (anti-Fas antibodies). Thymocytes stimulated by GD3 by a mitochondrial apoptotic route were an exception. Possible mechanisms of the caspase-3 involvement in the regulation of the activity of mitochondrial apoptosis-induced channels (MAC) are discussed and in particular, the role of proapoptotic proteins Bax/Bid.  相似文献   

14.
Singh T  Sharma SD  Katiyar SK 《PloS one》2011,6(11):e27444
Lung cancer remains the leading cause of cancer-related deaths worldwide, and non-small cell lung cancer (NSCLC) represents approximately 80% of total lung cancer cases. The use of non-toxic dietary phytochemicals can be considered as a chemotherapeutic strategy for the management of the NSCLC. Here, we report that grape seed proanthocyanidins (GSPs) induce apoptosis of NSCLC cells, A549 and H1299, in vitro which is mediated through increased expression of pro-apoptotic protein Bax, decreased expression of anti-apoptotic proteins Bcl2 and Bcl-xl, disruption of mitochondrial membrane potential, and activation of caspases 9, 3 and poly (ADP-ribose) polymerase (PARP). Pre-treatment of A549 and H1299 cells with the caspase-3 inhibitor (z-DEVD-fmk) significantly blocked the GSPs-induced apoptosis of these cells confirmed that GSPs-induced apoptosis is mediated through activation of caspases-3. Treatments of A549 and H1299 cells with GSPs resulted in an increase in G1 arrest. G0/G1 phase of the cell cycle is known to be controlled by cyclin dependent kinases (Cdk), cyclin-dependent kinase inhibitors (Cdki) and cyclins. Our western blot analyses showed that GSPs-induced G1 cell cycle arrest was mediated through the increased expression of Cdki proteins (Cip1/p21 and Kip1/p27), and a simultaneous decrease in the levels of Cdk2, Cdk4, Cdk6 and cyclins. Further, administration of 50, 100 or 200 mg GSPs/kg body weight of mice by oral gavage (5 d/week) markedly inhibited the growth of s.c. A549 and H1299 lung tumor xenografts in athymic nude mice, which was associated with the induction of apoptotic cell death, increased expression of Bax, reduced expression of anti-apoptotic proteins and activation of caspase-3 in tumor xenograft cells. Based on the data obtained in animal study, human equivalent dose of GSPs was calculated, which seems affordable and attainable. Together, these results suggest that GSPs may represent a potential therapeutic agent for the non-small cell lung cancer.  相似文献   

15.
Mitochondria provide a key amplification step in the apoptotic pathway of many cells by releasing apoptogenic proteins into the cytosol. Recent studies have provided insights into how Bax and Bid may operate synergistically to recruit mitochondria into the pathway and how GD3 ganglioside, a metabolite of the sphingomyelin pathway, may also be used. In ischaemic disease, activation of the mitochondrial permeability transition pore may bypass the requirement for these factors.  相似文献   

16.
Cytochrome c release from mitochondria is central to apoptosis, but the events leading up to it are disputed. The mitochondrial membrane potential has been reported to decrease, increase or remain unchanged during cytochrome c release. We measured mitochondrial membrane potential in Jurkat cells undergoing apoptosis by the uptake of the radiolabelled lipophilic cation TPMP, enabling small changes in potential to be determined. The ATP/ADP ratio, mitochondrial and cell volumes, plasma membrane potential and the mitochondrial membrane potential in permeabilised cells were also measured. Before cytochrome c release the mitochondrial membrane potential increased, followed by a decrease in potential associated with mitochondrial swelling and the release of cytochrome c and DDP-1, an intermembrane space house keeping protein. Mitochondrial swelling and cytochrome c release were both blocked by bongkrekic acid, an inhibitor of the permeability transition. We conclude that during apoptosis mitochondria undergo an initial priming phase associated with hyperpolarisation which leads to an effector phase, during which mitochondria swell and release cytochrome c.  相似文献   

17.
The Helicobacter pylori infection of gastric mucosa is one of the most common infectious diseases and is associated with a variety of clinical outcomes, including peptic ulcer disease and gastric cancer. Helicobacter pylori-induced damage to gastric mucosal cells is controlled by bacterial virulence factors, which include VacA and CagA. Outer membrane vesicles are constantly shed by the bacteria and can provide an additional mechanism for pathogenicity by releasing non-secretable factors which can then interact with epithelial cells. The present report shows that external membrane vesicles are able to induce apoptosis not mediated by mitochondrial pathway in gastric (AGS) epithelial cells, as demonstrated by the lack of cytochrome c release with an activation of caspase 8 and 3. Apoptosis induced by these vesicles does not require a classic VacA+ phenotype, as a negative strain with a truncated and therefore non-secretable form of this protein can also induce cell death. These results should be taken into account in future studies of H. pylori pathogenicity in strains apparently VacA-.  相似文献   

18.
19.
20.
Cytotoxic lymphocytes (CL) induce death of their targets by granule exocytosis. During this process, enzymes contained within cytotoxic granules (granzymes) are delivered to the target cell where the enzymes trigger the cell death by cleaving specific substrates. Granzyme B is the only granzyme that has been shown to induce cell death by apoptosis, but the exact pathway by which this is achieved has been the subject of hot debate. Furthermore, several other death-inducing granzymes have been identified; therefore, the exact contribution of granzyme B to CL-induced death is unclear. In this study, we discuss our recent findings on granzyme B-induced cell death and discuss the potential relevance of this pathway to CL-induced death of viral-infected and transformed cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号