首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
J E Hooper  M P Scott 《Cell》1989,59(4):751-765
The patched (ptc) gene is one of several segment polarity genes required for correct patterning within every segment of Drosophila. The absence of ptc gene function causes a transformation of the fate of cells in the middle part of each segment so that they form pattern elements characteristic of cells positioned around the segment border. Analysis of the mutant phenotype demonstrates that both segment and parasegment borders are included in the duplicated pattern of ptc mutants. We have cloned the ptc gene and deduced that the product is a 1286 amino acid protein with at least seven putative transmembrane alpha helices. ptc RNA is expressed in embryos in broad stripes of segmental periodicity that later split into two stripes per segment primordium. The pattern of expression does not directly predict the transformation seen in ptc mutant embryos, suggesting that ptc participates in cell interactions that establish pattern within the segment.  相似文献   

2.
3.
4.
Haplo-insufficiency of human Lis1 causes lissencephaly. Reduced Lis1 activity in both humans and mice results in a neuronal migration defect. Here we show that Drosophila Lis1 is highly expressed in the nervous system. Lis1 is essential for neuroblast proliferation and axonal transport, as shown by a mosaic analysis using a Lis1 null mutation. Moreover, it is cell-autonomously required for dendritic growth, branching and maturation. Analogous mosaic analysis shows that neurons containing a mutated cytoplasmic-dynein heavy chain (Dhc64C) exhibit phenotypes similar to Lis1 mutants. These results implicate Lis1 as a regulator of the microtubule cytoskeleton and show that it is important for diverse physiological functions in the nervous system.  相似文献   

5.
D B Zhao  S Ct  F Jhnig  J Haller    H Jckle 《The EMBO journal》1988,7(4):1115-1119
During the development of the central nervous system, Drosophila embryo axons become organized in a stereo-typed fasciculation pattern. We have found that the zipper (zip) gene, initially identified on the basis of a defective larval cuticle in zip mutant embryos, is possibly involved in the establishment or maintenance of the axon pattern during the late stages of neurogenesis. The zip wild-type gene is expressed in the developing nervous system. It codes for a putative integral membrane protein. Both the molecular features of zipper and its biological effect in the nervous system of mutants suggest that zipper is an essential component for cell surface interactions involved in axon patterning, and that the cuticle phenotype of zip mutants is dependent on the primary defects observed in the nervous system.  相似文献   

6.
7.
8.
The Drosophila mushroom bodies (MBs), paired brain structures composed of vertical and medial lobes, achieve their final organization at metamorphosis. The alpha lobe absent (ala) mutant randomly lacks either the vertical lobes or two of the median lobes. We characterize the ala axonal phenotype at the single-cell level, and show that the ala mutation affects Drosophila ethanolamine (Etn) kinase activity and induces Etn accumulation. Etn kinase is overexpressed in almost all cancer cells. We demonstrate that this enzymatic activity is required in MB neuroblasts to allow a rapid rate of cell division at metamorphosis, linking Etn kinase activity with mitotic progression. Tight control of the pace of neuroblast division is therefore crucial for completion of the developmental program in the adult brain.  相似文献   

9.
Dynamics of changes in cytosolic calcium concentration resulting from facilitation of calcium leakage from the stores and (or) blocking the pathways of its reuptake back into the stores or extrusion out of the cell (or both) have been investigated experimentally. It has been found that: (a) no mechanisms other than the membrane leakage, PMCA or SERCA, are involved in the discharge of calcium stores and calcium extrusion or reuptake; (b) the discharge of calcium stores in the absence of both its extrusion and reuptake back into the stores depends only on membrane leakage, the asymptotic calcium concentration in cytosol depending only on the initial content of the stores and being independent of the leakage; (c) the dynamics of the activity of both PMCA and SERCA depend on the initial rate of calcium influx, the dynamics differing from each other at high initial rates of calcium influx; (d) whereas there is no observable background activity of PMCA, background activity of SERCA is observed.  相似文献   

10.
11.
Fasciclin II (FASII) is a cell adhesion molecule that participates in axonal pathfinding, fasciculation and divergence in the Drosophila nervous system. Here, we examined spatio-temporal control of fasII expression during the development of adult mushroom body (MB) and found that suppression of fasII in alpha'/beta' neurons is essential for the formation of adult alpha'/beta' and alpha/beta lobes. Of gamma, alpha'/beta' and alpha/beta neurons, which are derived sequentially from the same four MB neuroblasts, only gamma and alpha/beta neurons expressed fasII. When fasII was misexpressed in developing MB neurons, defects resulted, including loss or misdirection of adult alpha'/beta' lobes and concurrent misdirection of alpha/beta lobes. Although no gross anatomical defects were apparent in the larval MB lobes, alpha'/beta' lobes collapsed at the pupal stage when the larval lobe of gamma neurons degenerated. In addition, alpha/beta lobes, which developed at this time, were misdirected in close relationship with the collapse of alpha'/beta' lobes. These defects did not occur when fasII was overexpressed in only gamma and alpha/beta neurons, indicating that ectopic expression of fasII in alpha'/beta' neurons is required for the defects. Our findings also suggest that the alpha'/beta' lobe play a role in guiding the pathfinding by alpha/beta axons.  相似文献   

12.
13.
Reversible histone acetylation plays an important role in regulation of chromatin structure and function. Here, we report that the human orthologue of Drosophila melanogaster MOF, hMOF, is a histone H4 lysine K16-specific acetyltransferase. hMOF is also required for this modification in mammalian cells. Knockdown of hMOF in HeLa and HepG2 cells causes a dramatic reduction of histone H4K16 acetylation as detected by Western blot analysis and mass spectrometric analysis of endogenous histones. We also provide evidence that, similar to the Drosophila dosage compensation system, hMOF and hMSL3 form a complex in mammalian cells. hMOF and hMSL3 small interfering RNA-treated cells also show dramatic nuclear morphological deformations, depicted by a polylobulated nuclear phenotype. Reduction of hMOF protein levels by RNA interference in HeLa cells also leads to accumulation of cells in the G(2) and M phases of the cell cycle. Treatment with specific inhibitors of the DNA damage response pathway reverts the cell cycle arrest caused by a reduction in hMOF protein levels. Furthermore, hMOF-depleted cells show an increased number of phospho-ATM and gammaH2AX foci and have an impaired repair response to ionizing radiation. Taken together, our data show that hMOF is required for histone H4 lysine 16 acetylation in mammalian cells and suggest that hMOF has a role in DNA damage response during cell cycle progression.  相似文献   

14.
MicroRNAs (miRNAs) have been implicated as regulators of central nervous system (CNS) development and function. miR-124 is an evolutionarily ancient, CNS-specific miRNA. On the basis of the evolutionary conservation of its expression in the CNS, miR-124 is expected to have an ancient conserved function. Intriguingly, investigation of miR-124 function using antisense-mediated miRNA depletion has produced divergent and in some cases contradictory findings in a variety of model systems. Here we investigated miR-124 function using a targeted knockout mutant and present evidence for a role during central brain neurogenesis in Drosophila melanogaster. miR-124 activity in the larval neuroblast lineage is required to support normal levels of neuronal progenitor proliferation. We identify anachronism (ana), which encodes a secreted inhibitor of neuroblast proliferation, as a functionally important target of miR-124 acting in the neuroblast lineage. ana has previously been thought to be glial specific in its expression and to act from the cortex glia to control the exit of neuroblasts from quiescence into the proliferative phase that generates the neurons of the adult CNS during larval development. We provide evidence that ana is expressed in miR-124-expressing neuroblast lineages and that ana activity must be limited by the action of miR-124 during neuronal progenitor proliferation. We discuss the possibility that the apparent divergence of function of miR-124 in different model systems might reflect functional divergence through target site evolution.  相似文献   

15.
CORL proteins (FUSSEL/SKOR proteins in humans) are related to Sno/Ski oncogenes but their developmental roles are unknown. We have cloned Drosophila CORL and show that its expression is restricted to distinct subsets of cells in the central nervous system. We generated a deletion of CORL and noted that homozygous individuals rarely survive to adulthood. Df(4)dCORL adult escapers display mushroom body (MB) defects and Df(4)dCORL larvae are lacking Ecdysone Receptor (EcR-B1) expression in MB neurons. This is phenocopied in CORL-RNAi and Smad2-RNAi clones in wild-type larvae. Furthermore, constitutively active Baboon (type I receptor upstream of Smad2) cannot stimulate EcR-B1 MB expression in Df(4)dCORL larvae, which demonstrates a formal requirement for CORL in Smad2 signaling. Studies of mouse Corl1 (Skor1) revealed that it binds specifically to Smad3. Overall, the data suggest that CORL facilitates Smad2 activity upstream of EcR-B1 in the MB. The conservation of neural expression and strong sequence homology of all CORL proteins suggests that this is a new family of Smad co-factors.  相似文献   

16.
Null mutations in the Drosophila gene, slowmo (slmo), result in reduced mobility and lethality in first-instar larvae. Slowmo encodes a mitochondrial protein of unknown function, as do the two other homologs found in Drosophila. Here, we have studied a hypomorphic P-element allele of slmo demonstrating its effects on germline divisions in both testes and ovaries. Using in situ studies, enhancer-trap activity, and promoter fusions, we have shown that slmo expression in testes is found in the somatic cyst cells (SCC). The hypomorphic allele for Slmo revealed apoptotic loss of germline cells in the larval germline, culminating in a complete absence of the germline in adult flies. In females, a similar degeneration of the germarium is observed, while reporter gene expression is found in both germline and somatic cells. Using a null mutation in female germline clones, we find slmo is dispensable from the germline cells. Our results suggest that Slowmo is not required in germline cells directly, but is required in SCCs responsible for maintaining germline survival in both sexes.  相似文献   

17.
18.
The molecular mechanisms underlying axonal pathfinding are not well understood. In a genetic screen for mutations affecting the projection of the larval optic nerve we isolated the abstrakt locus. abstrakt is required for pathfinding of the larval optic nerve, and it also affects development in both the adult visual system and the embryonic CNS. Here we report the molecular characterization of abstrakt. It encodes a putative ATP-dependent RNA helicase of the DEAD box protein family, with two rare substitutions in the PTRELA and the RG-D motifs, thought to be involved in oligonucleotide binding: serine for threonine, and lysine for arginine, respectively. Two mutant alleles of abstrakt show amino acid exchanges in highly conserved positions. A glycine to serine exchange in the HRIGR motif, which is involved in RNA binding and ATP hydrolysis, results in a complete loss of protein function; and a proline to leucine exchange located between the highly conserved ATPase A and PTRELA motifs results in temperature-sensitive protein function. Both the broad requirement for abstrakt gene function and its ubiquitous expression are consistent with a molecular function of the abstrakt protein in mRNA splicing or translational control.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号