首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pollination ecology of Quercus is influenced by meteorological, biotic and genetic factors. This study was undertaken to ascertain the effect induced by these factors on pollen production, release and dispersion. Aerobiological data have been used in recent years as phenological information, because the presence of pollen in the air is the result of flowering across a wide area. The onset of the Quercus pollen season and the atmospheric pollen concentrations during the pollination period in two localities of north-west Spain (Ourense and Santiago) were determined from 1993 to 2001. There were important variations in total annual pollen as a result of meteorological conditions, lenticular galls produced by Neuropterus on catkins and biennial genetic rhythms of pollen production. In order to determine the beginning of flowering, a thermal time model has been used. Chill requirements were around 800 chilling hours (CH) and heat requirements were 953 growth degree days (GDD in °C) in Santiago and 586 GDD in Ourense. Pollen in the air show positive correlation (99% significance) with daily thermal oscillation, maximum and minimum temperatures, and hours of sunshine. Regression analysis with previous days' pollen concentrations explained the high percentage of pollen concentration variability, as meteorological variables do not, on their own, explain pollen production and release.  © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society , 2005, 149 , 283–297.  相似文献   

2.
The global climate change reported over recent years may prompt changes in the atmospheric pollen season (APS). The aim of this study is to evaluate the possible impact provoked by meteorological conditions variations at different seasons of the year or different geographical areas on APS. Alnus, Betula and Castanea atmospheric pollen seasons and trends during the last 17 years at Ourense and Vigo (Galicia—NW Spain) and Perugia (Italy) were analysed. Possible incidence of the meteorological trends observed in the different cities on the atmospheric pollen seasons and the chill and heat requirements were evaluated. Pollen data from Ourense, Vigo and Perugia (1995–2011) were used. Pollen sampling was performed using LANZONI VPPS 2000 volumetric traps (Hirst in Ann Appl Biol 36:257–265, 1952), placed on top of different buildings at a similar height from the ground. Several methods, dates and threshold temperatures for determining the chill and heat requirements needed to trigger flowering were tested. Different temporary order in the pollination sequence was observed between the three pollen types studied in the three sites. Alnus flowers few days in advance in Ourense respecting to Vigo and 1 month earlier than Perugia. The Betula flowering start date in Ourense and Vigo is almost simultaneous, taking place only 5 days in advance with respect to Perugia. Finally, scarce differences in the APS onset of Castanea were detected between the three cities. The variations observed among the two areas (Umbria, Italy and Galicia, Spain) in the onset of pollen season in the winter or spring flowering trees could be explained by differences in the thermal requirements needed for flowering as consequence of the climatic conditions recorded during the previous period to flowering. The length of the chilling and heat period as well as the thermal requirements obtained showed differences between geographical areas. The chill requirements accumulated were higher in Perugia than Ourense and Vigo. By contrary, the lowest heat accumulation was achieved in Perugia. The observed trends in the APS characteristics and the weather-related parameters were not homogeneous both in the pollen types and sites. The pollen index of Betula and Castanea pollen in Ourense shows a significant trend to increase.  相似文献   

3.
Although aerobiological data are often used in phenological research as an indicator of flowering, airborne pollen concentrations are influenced by a number of factors that could affect pollen curves. This paper reports on a study of various aspects of reproductive biology in Q. ilex subsp. ballota, together with environmental factors influencing pollen release and transport, with a view of achieving reliable interpretation of Quercus pollen curves in Ourense (NW Spain). Aerobiological data were recorded from 2002 to 2004 at two sites in the province of Ourense. From 1st February to the end of the flowering period, phenological observations were carried out on 19 trees from the Q. ilex subsp. ballota population found in the Ourense area. Pollen production was calculated for the same trees. The chilling and heating requirements for triggering development were also calculated. The mean flowering period lasted 11-15 days. Reduced pollen output per catkin and, especially, a reduced number of catkins per tree in 2003 and 2004, prompted a marked decline in overall pollen production. Major differences observed in Q. ilex subsp. ballota pollen curves were attributed to the considerable influence both of weather conditions during pollination and pollen production. In years with high pollen production and weather conditions favouring pollen release, Q. ilex subsp. ballota contributed almost 10% to the total Quercus pollen curve. Around 20% of the pollen trapped was captured before or after flowering periods.  相似文献   

4.
Fraxinus pollen data from eight Galician localities (1999-2003), recorded using 7-day Lanzoni VPPS pollen traps, were studied to determine their temporal and spatial distribution. The determination of the chill and heat required to trigger flowering and the start cumulative date were calculated using ten years of pollen data from Ourense. The sum of maximum temperatures from the 55 days before the peak date showed the lowest standard deviation coefficient and the mean quantity of accumulated heat was 741. Temperatures below 0°C and/or rainfall at the beginning of flowering caused a longer period before the peak date was registered. Temperatures recorded in November were very important for chill accumulation and determine the heat requirement needed to trigger Fraxinus flowering in Galicia.  相似文献   

5.
Temperature is one of the main factors affecting the start of flowering in tree species that flower at the beginning of spring. Knowledge of the chilling and heat needs required by plants to overcome the period of dormancy enables us to determine the onset of pollination, which is of great importance to allergy sufferers. This study attempted to obtain behaviour models with a view to determining both the onset of the olive pollen season and daily pollen concentrations during the pollination period in Vigo. Monitoring was carried out using a Lanzoni VPPS 2000 pollen trap, from 1995 to 2002 inclusive.

Olea pollen is mainly detected during the spring, principally in May. Given the geographical location, the very limited presence of this tree in the study area and the low Olea pollen concentrations detected in northern Spain as a whole, the values recorded here in the atmosphere of Vigo are particularly striking. A strong correlation was observed between total quantity olive pollen collected over the season and rainfall recorded during the second fortnight in February. According to the proposed model, an average of 680 Chilling Hours (CH) are necessary to overcome the chill period and break the state of bud dormancy, and 481 Growth Degree Days (GDD) °C are needed to induce flowering. Models for predicting daily mean pollen concentrations combine temperature and the previous days' pollen concentrations as predictor variables to provide a high level of prediction.  相似文献   

6.
This study presents the results obtained for airborne Betula pollen between 1992 and 2000 in Ourense, Spain, sampled by volumetric spore-trap (LANZONI VPPS2000). Annual and year-on-year variations were analyzed, and a statistical study of the correlation between daily counts and several meteorological parameters was performed. Birch pollen is present in the atmosphere during March and April in Ourense. Significant differences were observed among the different years. Values obtained for the correlation coefficient between Betula pollen counts and the various meteorological parameters studied indicate, for Ourense, a positive correlation between pollen count and both temperature and sunlight. A negative correlation was recorded for relative humidity. Temperature is thus the determining factor for flowering onset and intensity. Regression equations included values for the days prior to pollen concentration measurement in order to optimize results.  相似文献   

7.
Hazel (Corylus avellana L.) and black alder (Alnus glutinosa (L.) Gaertn.) are important sources of airborne pollen and represent an allergen threat during the flowering period. Researches on airborne pollen concentrations in both species are useful in allergology, as well as for fruit production for hazel. The aims of the present study were: (1) to investigate the relationships between environmental conditions and the airborne pollen concentration of hazel and black alder during the flowering period by correlation and multiple regression analysis and (2) to predict the pollen season start (PSS) by using a sequential model, in order to obtain a helpful tool in allergology and hazel cultivation. In this study, the applied method defines the pollen season as the period in which 90 % of the total season’s catch occurred, using a data set of 18 years (1996–2014). The relationships between daily meteorological parameters (temperature, humidity, rainfall and wind speed) during the 14-day period that precedes the PSS and the PSS of hazel and black alder (day of the year) were investigated. The results showed that mean temperature and the number of rainy days before the PSS are the main factors influencing PSS for both taxa. Moreover, the chilling and heat needed to break dormancy were estimated in order to predict the PSS of both species. Different years and different thresholds of temperature and chill days were used to calibrate and validate the model.  相似文献   

8.
Plant phenology, the study of seasonal plant activity driven by environmental factors, has found a renewal in the context of global climate change. Phenological events, such as leaf unfolding, exert strong control over seasonal exchanges of matter and energy between the land surface and the atmosphere. Phenological models that simulate the start of the growing season should be efficient tools to predict vegetation responses to climatic changes and related changes in energy balance. Species‐specific phenological models developed in the eighties have not been used for global‐scale predictions because their predictions were inaccurate in external conditions. Recent advances in phenology modelling at the species level suggest that prediction at a large scale may now be possible. In the present study, we tested the performance of species‐specific phenological models in time and space, looking at their ability (i) to predict regional phenology when previously fitted at a local scale, and (ii) to predict phenological trends, linked to climate changes, observed over a long‐term. For that task we used an historical phenological dataset from Ohio from the late ninetieth century and an airborne pollen dataset from Ontario, Québec and Maryland from the late twentieth century. The results show that the species‐specific phenological models used in this study were able to predict regional phenology even though they were fitted locally. The reconstruction of a phenological time series over the twentieth century showed a significant advancement of 0.2 days per year in the date of flowering of Ulmus americana, but very weak trends for Fraxinus americana and Quercus velutina.  相似文献   

9.
Pollinator‐mediated competition through shared pollinators can lead to segregated flowering phenologies, but empirical evidence for the process responsible for this flowering pattern is sparse. During two flowering seasons, we examined whether increasing overlap in flowering phenology decreased conspecific pollination, increased heterospecific pollination, and depressed seed output in the seven species composing a hummingbird–plant assemblage from the temperate forest of southern South America. Overall trends were summarized using meta‐analysis. Despite prevailing negative associations, relations between phenological overlap and conspecific pollen receipt varied extensively among species and between years. Heterospecific pollen receipt was low and presumably of limited biological significance. However, our results supported the hypothesis that concurrent flowering promotes interspecific pollen transfer, after accounting for changes in the abundance of conspecific flowers. Seed output was consistently reduced during maximum phenological overlap during the first flowering season because of limited fruit set. Responses varied more during the second year, despite an overall negative trend among species. Relations between estimated effects of phenological overlap on pollination and seed output, however, provided mixed evidence that conspecific pollen loss during pollinator visits to foreign flowers increases pollen limitation. By flowering together, different plant species might benefit each other's pollination by increasing hummingbird recruitment at the landscape level. Nevertheless, our results are mostly consistent with the hypothesis of pollinator‐mediated competition shaping the segregated flowering pattern reported previously for this temperate plant assemblage. The mechanisms likely involve effects on male function, whereby pollen‐transport loss during heterospecific flower visits limit pollen export, and more variable effects on female function through pollen limitation.  相似文献   

10.
With global warming, an advance in spring leaf phenology has been reported worldwide. However, it is difficult to forecast phenology for a given species, due to a lack of knowledge about chilling requirements. We quantified chilling and heat requirements for leaf unfolding in two European tree species and investigated their relative contributions to phenological variations between and within populations. We used an extensive database containing information about the leaf phenology of 14 oak and 10 beech populations monitored over elevation gradients since 2005. In parallel, we studied the various bud dormancy phases, in controlled conditions, by regularly sampling low- and high-elevation populations during fall and winter. Oak was 2.3 times more sensitive to temperature for leaf unfolding over the elevation gradient and had a lower chilling requirement for dormancy release than beech. We found that chilling is currently insufficient for the full release of dormancy, for both species, at the lowest elevations in the area studied. Genetic variation in leaf unfolding timing between and within oak populations was probably due to differences in heat requirement rather than differences in chilling requirement. Our results demonstrate the importance of chilling for leaf unfolding in forest trees and indicate that the advance in leaf unfolding phenology with increasing temperature will probably be less pronounced than forecasted. This highlights the urgent need to determine experimentally the interactions between chilling and heat requirements in forest tree species, to improve our understanding and modeling of changes in phenological timing under global warming.  相似文献   

11.
The impact of climate change on the advancement of plant phenological events has been heavily studied in the last decade. Although the majority of spring plant phenological events have been trending earlier, this is not universally true. Recent work has suggested that species that are not advancing in their spring phenological behavior are responding more to lack of winter chill than increased spring heat. One way to test this hypothesis is by evaluating the behavior of a species known to have a moderate to high chilling requirement and examining how it is responding to increased warming. This study used a 60‐year data set for timing of leaf‐out and male flowering of walnut (Juglans regia) cultivar ‘Payne’ to examine this issue. The spring phenological behavior of ‘Payne’ walnut differed depending on bud type. The vegetative buds, which have a higher chilling requirement, trended toward earlier leaf‐out until about 1994, when they shifted to later leaf‐out. The date of male bud pollen shedding advanced over the course of the whole record. Our findings suggest that many species which have exhibited earlier bud break are responding to warmer spring temperatures, but may shift into responding more to winter temperatures (lack of adequate chilling) as warming continues.  相似文献   

12.
This paper reviews the terms and major criteria used to define and limit the pollen season. Pollen data from Cordoba (Spain), Ourense (Spain) and Bologna (Italy) were used to ascertain the extent to which aerobiological results and pollen curves are modified by the criteria selected. Results were analysed using Spearmanȁ9s correlation test. Phenological observations were also used to determine synchronization between pollen curves and plant phenology. The criteria for limiting the shortest and longest pollen season periods, as well as the earliest and latest start and end dates, varied according to the city and the taxon under study; in many cases, results for a given taxon also depended on the year. The smallest differences were obtained for Platanus and the greatest for Poaceae.  相似文献   

13.
The male flowering and leaf bud burst of birch take place almost simultaneously, suggesting that the observations of leaf bud burst could be used to determine the timing of birch pollen release. However, long‐distance transport of birch pollen before the onset of local flowering may complicate the utilization of phenological observations in pollen forecasting.

We compared the timing of leaf bud burst of silver birch with the timing of the stages of birch pollen season during an eight year period (1997–2004) at five sites in Finland. The stages of the birch pollen season were defined using four different thresholds: 1) the first date of the earliest three‐day period with airborne birch pollen counts exceeding 10 grains m?3 air; and the dates when the accumulated pollen sum reaches 2) 5%; 3) 50% and 4) 95% of the annual total. Atmospheric modelling was used to determine the source areas for the observed long‐distance transported pollen, and the exploitability of phenological observations in pollen forecasting was evaluated.

Pair‐wise comparisons of means indicate that the timing of leaf bud burst fell closest to the date when the accumulated pollen sum reached 5% of the annual total, and did not differ significantly from it at any site (p<0.05; Student‐Newman‐Keuls test). It was found that the timing of leaf bud burst of silver birch overlaps with the first half of the main birch pollen season. However, phenological observations alone do not suffice to determine the timing of the main birch pollen season because of long‐distance transport of birch pollen.  相似文献   

14.
In order to survive periods of adverse cold climatic conditions, plant requirements are satisfied by means of physiological adaptations to prevent cells from freezing. Thus, the growth of woody plants in temperate regions slows down and they enter into a physiological state called dormancy. In order to identify the chilling and heat requirements to overcome the dormancy period of Betula in the south of Europe, a comparative study was carried out with aerobiological pollen data of a 7-year (1995-2001) period in Vigo (Spain) and Perugia (Italy). To satisfy chilling requirements, base temperatures of 7 degrees C and 5.75 degrees C showed a lower standard variation coefficient: 3.94% and 2.36% in Perugia and Vigo respectively. In the case of heat accumulation, the sum of mean temperatures in Perugia and the sum of maximum temperatures in Vigo were the parameters that showed a minor coefficient of variation (11.13% and 14.51% respectively).  相似文献   

15.
The environmental physiology of three speciesof Collembola: Cryptopygus cisantarcticus, Isotoma klovstadi (Isotomidae) and Friesea grisea (Neanuridae) was investigated from November 2002 to February 2003 at Cape Hallett, North Victoria Land, Antarctica. All three species were freeze avoiding, and while supercooling points were variable on seasonal and daily scales in I. klovstadi and C. cisantarcticus, they remained largely static in F. grisea. LT50 (temperature where 50% of animals are killed by cold) was -13.6, -19.1 and -19.8 degrees C for C. cisantarcticus, I. klovstadi and F. grisea, respectively. Upper lethal temperature was 34, 34 and 38 degrees C for C. cisantarcticus, I. klovstadi and F. grisea. Critical thermal minimum onset (the temperature where individuals entered chill coma) was ca. -7, -12 and -8 degrees C for C. cisantarcticus, I. klovstadi and F. grisea, and 25% of I. klovstadi individuals froze without entering chill coma. Critical thermal maximum (the onset of spasms at high temperature) was 30, 33 and 34 degrees C for C. cisantarcticus, I. klovstadi and F. grisea. Haemolymph osmolality was approximately 720 mOsm for C. cisantarcticus and 680 mOsm for I. klovstadi, and both species showed a moderate degree of thermal hysteresis, which persisted through the season. Desiccation resistance was measured as survival above silica gel, and the species survived in the rank order of C. cisantarcticus< I. klovstadi = F. grisea. Desiccation resulted in an increase in haemolymph osmolality in I. klovstadi, and water was quickly regained by desiccation-stressed individuals that had access to liquid water, but not by individuals placed in high humidity, indicating that this species is unable to absorb atmospheric water vapour. SDS-PAGE did not suggest any strong patterns in protein synthesis either seasonally or in response to temperature or desiccation stress. Microclimate temperatures were measured at sites representative of collection sites for the three species. Microclimate temperatures were highly variable on a diurnal and weekly scale (the latter relating to weather patterns), but showed little overall variation across the summer season. Potentially lethal high and low temperatures were recorded at several sites, and it is suggested that these temperature extremes account for the observed restriction of the less-tolerant C. cisantarcticus at Cape Hallett. Together, these data significantly increase the current knowledge of the environmental physiology of Antarctic Collembola.  相似文献   

16.
In Melbourne, a southern hemisphere city with a cool temperate climate, the grass pollen season has been monitored using a Burkard spore trap for 12 years (11 pollen seasons, which extend from October through January). The onset of the grass pollen season (OGPS) has been defined in various ways using both arbitrary cumulative scores (Sum 75, Sum 100) and percentages (10% Pollen Fly). OGPS, based on the forecast model of pollen season devised by Lejoly-Gabriel (Acta Geogr. Lovan., 13 (1978) 1–260) has been most widely used in efforts to forecast the beginning of the pollen season. OGPS occurred in Melbourne between 20 October to 24 November (average 6 November), a difference of 35 days. Duration of the pollen season ranged from 46 to 81 days, with a mean of 55 days, one of the longest reported. The relationships between onset and various weather parameters for July have enabled us to modify a model, using linear regression analysis, to predict onset. The prediction model is based on a negative correlation between date of onset and the sum of rainfall for July (a winter month). The error of prediction (Ep) is 24% and predicted day of OGPS was precisely predicted on 2 occasions, and on others with a range of accuracy of 3 to 14 days.  相似文献   

17.
The major allergenic pollen prevalent in the Derby air in May is Quercus pollen which has been monitored volumetrically from 1970–1997. Quercus pollen levels in Derby are increasing, showing an established long term trend, with 1995 being an exceptionally high year. There is now an earlier start date and a longer seasonal duration. The mean Quercus diurnal periodicity for 1991–1997 shows a peak at 15.00 hours.A detailed study of the 1990–1997 seasons established that a maximum temperature of 20 °C or above, at the usual time of flowering, occasions the start of the Quercus pollen season. Average May temperature and drought in the previous June and July are important factors in determining Quercus pollen totals. Predictions for the forthcoming seasons were produced which compared favourably with the actual pollen totals.  相似文献   

18.
19.
An analysis was made of the protein content of pollen loads produced by the bees in a hive situated in Viana do Bolo (Ourense, north-west Spain), to establish whether or not the relative quantity of protein in the pollen of each plant species influences the preference made by the bee of the flowers that supply pollen to the hive. This analysis was performed on all types of pollen that formed more than 5% of the pollen spectrum. Pollen load samples were collected directly from the hive from March to September. Pollen loads were separated by colour, and their specific homogeneity was confirmed microscopically. The Bradford method has been used for protein extraction and spectrophotometry was used for the determination of protein content. The results show that the different pollen loads have high protein content. Pollen of the plant species that reached relatively higher percentages in the pollen spectrum are also those that have the highest protein content. These were Cytisus scoparius type, uncultivated Poaceae, Quercus robur type, Sanguisorba minor, Salix fragilis and Spergularia rubra type. The pollen of the systematic units, which had pollen loads that could be identified at the level of species, maintained a constant value of protein content independently of the date the samples were obtained. The pollen of the systematic units, which had pollen loads that could be identified at the level of pollen type, has varied in protein content in the analyses performed on samples obtained on different dates. This result is due to the fact that the different species that integrate the pollen type flower on different dates, and thus have a pollenkitt with different characteristics.  相似文献   

20.
The European honeybee, Apis mellifera L. (Hymenoptera: Apidae), is the most important crop pollinator, and there is an urgent need for a sustained supply of honeybee colonies. Understanding the availability of pollen resources around apiaries throughout the brood-rearing season is crucial to increasing the number of colonies. However, detailed information on the floral resources used by honeybees is limited due to a scarcity of efficient methods for identifying pollen species composition. Therefore, we developed a DNA barcoding method for identifying the species of each pollen pellet and for quantifying the species composition by summing the weights of the pellets for each species. To establish the molecular biological protocol, we analyzed 1008 pellets collected between late July and early September 2016 from five hives placed in a forest/agricultural landscape of Hokkaido, northern Japan. Pollen was classified into 31 plant taxa, of which 29 were identified with satisfactory discrimination (25 species and 4 genera) using trnL-trnF and ITS2 as DNA barcoding regions together with available floral and phenological information. The remaining two taxa were classified to the species level using other DNA barcoding regions. Of the 1008 pollen pellets tested, 1005 (99.7%) were successfully identified. As an example of the use of this method, we demonstrated the change in species composition of pollen pellets collected each week for 9 weeks from the same hive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号