首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new approach to the conformational study of polypeptides is presented. It considers explicitly the coupling between the conformation of the molecule and the ionization equilibria at a given pH value. Calculations of the solvation free energy and free energy of ionization of a 17-residue polypeptide are carried out using a fast multigrid boundary element method (MBE). The MBE method uses an adaptive tessellation of the molecular surface by boundary elements with non-regular size to solve the Poisson equation rapidly, and with a high degree of accuracy. The MBE method is integrated into the ECEPP (Empirical Conformational Energy Program for Peptides) algorithm to compute the coupling between the ionization state and the conformation of the molecule.This approach has been applied to study the conformational preference of a short polypeptide for which the available NMR and CD experimental data indicate that conformations containing a right-handed α-helical segment are energetically more favorable at low values of pH. The results of calculations using the present method agree quite well with experiments, in contrast to previous applications with standard techniques (using pre-assigned charges at each pH) that were not able to reproduce the experimental findings. Also, it is shown how the coupling to the conformation leads to different degrees of ionization of a given type of residue, for example glutamic acid, at different positions in the amino acid sequence, at any given pH. The results of this study provide a sound basis to discuss the origin of the stability of polypeptide conformations, and its dependence on the environmental conditions.  相似文献   

2.
G H Paine  H A Scheraga 《Biopolymers》1986,25(8):1547-1563
The average conformation of Met-enkephalin was determined by using an adaptive, importance-sampling Monte Carlo algorithm (SMAPPS—Statistical Mechanical Algorithm for Predicting Protein Structure). In the calculation, only the backbone dihedral angles (? and ψ) were allowed to vary; i.e., all side-chain (χ) and peptide-bond (ω) dihedral angles were kept fixed at the values corresponding to a low-energy structure of the pentapeptide. The total conformational energy for each randomly generated structure of the polypeptide was obtained by summing over the interaction energies of all pairs of nonbonded atoms of the whole molecule. The interaction energies were computed by the program ECEPP/2 (Empirical Conformational Energy Program for Peptides). Solvent effects were not included in the computation. The calculation was repeated until a total of 10 independent average conformations were established. The regions of conformational space occupied by the average structures were compared with the regions of low conditional free energy obtained by SMAPPS in the first paper of this series. Such a comparison provides an analysis of the capacity of SMAPPS to adjust the Monte Carlo search to regions of highest probability. The results demonstrate that the ability of SMAPPS to focus the Monte Carlo search is excellent. Finally, the 10 independent average conformations and the mean of the 10 average structures were utilized as the initial conformations for a direct energy minimization of the pentapeptide. Of the 11 final energy-minimized structures, three of the conformations were found to be equivalent to the conformation of lowest energy determined previously. In addition, all but two of the remaining energy-minimized structures were found to correspond to one of the two other conformations of high probability obtained in the first paper of this series. These results indicate that a set of independent average conformations can provide a rational, unbiased choice for the initial conformation, to be used in a direct energy minimization of a polypeptide. The final energy-minimized structures consequently constitute a set of low-energy conformations, which include the global energy minimum.  相似文献   

3.
A theoretical study to identify the conformational preferences of lysine-based oligopeptides has been carried out. The solvation free energy and free energy of ionization of the oligopeptides have been calculated by using a fast multigrid boundary element method that considers the coupling between the conformation of the molecule and the ionization equilibria explicitly, at a given pH value. It has been found experimentally that isolated alanine and lysine residues have somewhat small intrinsic helix-forming tendencies; however, results from these simulations indicate that conformations containing right-handed alpha-helical turns are energetically favorable at low values of pH for lysine-based oligopeptides. Also, unusual patterns of interactions among lysine side chains with large hydrophobic contacts and close proximity (5-6 A) between charged NH3+ groups are observed. Similar arrangements of charged groups have been seen for lysine and arginine residues in experimentally determined structures of proteins available from the Protein Data Bank. The lowest-free-energy conformation of the sequence Ac-(LYS)6-NMe from these simulations showed large pKalpha shifts for some of the NH3+ groups of the lysine residues. Such large effects are not observed in the lowest-energy conformations of oligopeptide sequences with two, three, or four lysine residues. Calculations on the sequence Ac-LYS-(ALA)4-LYS-NMe also reveal low-energy alpha-helical conformations with interactions of one of the LYS side chains with the helix backbone in an arrangement quite similar to the one described recently by (Proc. Natl. Acad. Sci. U.S.A. 93:4025-4029). The results of this study provide a sound basis with which to discuss the nature of the interactions, such as hydrophobicity, charge-charge interaction, and solvent polarization effects, that stabilize right-handed alpha-helical conformations.  相似文献   

4.
The glutathione S-transferase (GST) isozyme A1-1 contains at its active site a catalytic tyrosine, Tyr9, which hydrogen bonds to, and stabilizes, the thiolate form of glutathione, GS-. In the substrate-free GST A1-1, the Tyr 9 has an unusually low pKa, approximately 8.2, for which the ionization to tyrosinate is monitored conveniently by UV and fluorescence spectroscopy in the tryptophan-free mutant, W21F. In addition, a short alpha-helix, residues 208-222, provides part of the GSH and hydrophobic ligand binding sites, and the helix becomes "disordered" in the absence of ligands. Here, hydrostatic pressure has been used to probe the conformational dynamics of the C-terminal helix, which are apparently linked to Tyr 9 ionization. The extent of ionization of Tyr 9 at pH 7.6 is increased dramatically at low pressures (p1/2 = 0.52 kbar), based on fluorescence titration of Tyr 9. The mutant protein W21F:Y9F exhibits no changes in tyrosine fluorescence up to 1.2 kbar; pressure specifically ionizes Tyr 9. The volume change, delta V, for the pressure-dependent ionization of Tyr 9 at pH 7.6, 19 degrees C, was -33 +/- 3 mL/mol. In contrast, N-acetyl tyrosine exhibits a delta V for deprotonation of -11 +/- 1 mL/mol, beginning from the same extent of initial ionization, pH 9.5. The pressure-dependent ionization is completely reversible for both Tyr 9 and N-acetyl tyrosine. Addition of S-methyl GSH converted the "soft" active site to a noncompressible site that exhibited negligible pressure-dependent ionization of Tyr 9 below 0.8 kbar. In addition, Phe 220 forms part of an "aromatic cluster" with Tyr 9 and Phe 10, and interactions among these residues were hypothesized to control the order of the C-terminal helix. The amino acid substitutions F220Y, F2201, and F220L afford proteins that undergo pressure-dependent ionization of Tyr 9 with delta V values of 31 +/- 2 mL/mol, 43 +/- 3 mL/mol, and 29 +/- 2 mL/mol, respectively. The p1/2 values for Tyr 9 ionization were 0.61 kbar, 0.41 kbar, and 0.46 kbar for F220Y, F220I, and F220L, respectively. Together, the results suggest that the C-terminal helix is conformationally heterogeneous in the absence of ligands. The conformations differ little in free energy, but they are significantly different in volume, and mutations at Phe 220 control the conformational distribution.  相似文献   

5.
Twenty analogues of the natural antitumor agent dolastatin 11, including majusculamide C, were synthesized and tested for cytotoxicity against human cancer cells and stimulation of actin polymerization. Only analogues containing the 30-membered ring were active. Molecular modeling and NMR evidence showed the low-energy conformations. The amide bonds are all trans except for the one between the Tyr and Val units, which is cis. Since an analogue restricted to negative 2-3-4-5 angles stimulated actin polymerization but was inactive in cells, the binding conformation (most likely the lowest-energy conformation in water) has a negative 2-3-4-5 angle, whereas a conformation with a positive 2-3-4-5 angle (most likely the lowest energy conformation in chloroform) goes through cell walls. The highly active R alcohol from borohydride reduction of dolastatin 11 is a candidate for conversion to prodrugs.  相似文献   

6.
We report here the results on N-acetyl-L-proline-N'-methylamide (Ac-Pro-NHMe) calculated at the HF/6-31+G(d) level with the conductor-like polarizable continuum model (CPCM) of self-consistent reaction field methods to investigate the changes of backbone and prolyl ring along the cis-trans isomerization of the prolyl peptide bond. From the potential energy surface, the barrier to ring flip from the down-puckered conformation to the up-puckered one is estimated to be 2.5 and 3.2 kcal/mol for trans and cis conformers of Ac-Pro-NHMe, respectively. In particular, the ring flip seems to be inaccessible in the intermediate regions between trans and cis conformations, because of higher barriers (approximately 13-19 kcal/mol) to rotation of the prolyl peptide bond. The torsion angles for backbone and prolyl ring vary largely around the transition states at omega' approximately 120 degrees and -70 degrees for the prolyl peptide bond. Three kinds of puckering amplitudes show the same trend of puckering along the cis-trans isomerization although their absolute values are different. In particular, trans and cis conformations have the almost same degree of puckering. The cis populations and barriers to rotation of the prolyl peptide bond for Ac-Pro-NHMe are increased with the increase of solvent polarity, which is mainly ascribed to the decreases of relative free energies for cis conformations and the increase of relative free energies for transition states.  相似文献   

7.
The cis and trans isomeric composition of a proline peptide bond can be determined by routine free-solution capillary electrophoresis measurements provided that one isomeric form is preferentially stabilized by a dissociable ionic group. This capability is illustrated using the angiotensin converting enzyme (ACE) inhibitor (S)-1-N-[1-(ethoxycarbonyl)-3-phenylpropyl]-L-ala-L-pro, which has the trade name enalapril. Electropherograms indicate that the two isomeric forms of enalapril can be separated with baseline resolution at 15 degrees C using capillary buffers having pH values in the dissociation ranges of the enalapril carboxyl group, pK(cis) and pK(trans) of 2.6 and 3.1, and of the enalapril amine group, pK(cis) and pK(trans) of 5.9 and 5.6. Such baseline resolution indicates that the isomeric composition does not change during analysis, facilitating measurement of the isomer composition of a sample prior to its injection into the capillary. Thus the effect of pH, ionic strength, or an aprotic solvent on the isomeric composition of enalapril can be measured under uniform analytical conditions. The trans isomer composition changes from 68% in the cationic form, pH <2, to 50% in the isoelectric form, pH approximately 4.5, to 60% in the anionic form, pH >7. Addition of salt to the isoelectric form or addition of an aprotic solvent to any form prior to analysis increases the trans isomer composition. Similar analyses can be made using the alternative ACE inhibitors captopril and enalaprilat.  相似文献   

8.
9.
Conformational energy calculations using an empirical conformational energy program for peptides (ECEPP) were carried out on 20 N-acetyl- N′-methylamides of Gly-X and X-Gly depeptides, where X = Ala, Asn, Asp, Gly, Phe, Ser, Thr, Tyr, Val, and Pro, and also of Leu-Gly. Each depeptde was found to have 25 or more low-energy minima, except Gly-Thr, which had only 11 low-energy minima because of the stable side chian-backbone hydrogen present in all low-energy conformation. As a group, the stble chain-backbone hydrogen bonds present in all low-energy conformations. As a group, the Gly-containing dipeptides were calculated in all low-energy prpensity for formation of bends than the Ala-containing depeptides. The X- Gly dipeptides were calculated to favor bends more than the Gly-X dipeptides, primarlly because of the high stability of the type II bend in X-Gly dipeptides. These results are in agreement with obseved occurrences of bends in the x-ray structures of globular proteins. The calculated conformation properties were found to be in good agreement with experimental results.  相似文献   

10.
To account for the relative contributions of lysine and alanine residues to the stability of alpha-helices of copolymers of these two residues, conformational energy calculations were carried out for several hexadecapeptides at several pHs. All the calculations considered explicitly the coupling between the conformation of the molecule and the ionization equilibria as a function of pH. The total free energy function used in these calculations included terms that account for the solvation free energy and free energy of ionization. These terms were evaluated by means of a fast multigrid boundary element method. Reasonable agreement with experimental values was obtained for the helix contents and vicinal coupling constants ((3)J(HNalpha)). The helix contents were found to depend strongly on the lysine content, in agreement with recent experimental results of Williams et al. (Journal of the American Chemical Society, 1998, Vol. 120, pp. 11033-11043) In the lowest energy conformation computed for a hexadecapeptide containing 3 lysine residues at pH 6, the lysine side chains are preferentially hydrated; this decreases the hydration of the backbone CO and NH groups, thereby forcing the latter to form hydrogen bonds with each other in the helical conformation. The lowest energy conformation computed for a hexadecapeptide containing 6 lysine residues at pH 6 shows a close proximity between the NH3(+) groups of the lysine side chains, a feature that was previously observed in calculations of short alanine-based oligopeptides. The calculation on a blocked 16-mer of alanine shows a 7% helix content based on the Boltzmann averaged vicinal coupling constants computed from the dihedral angles phi, consistent with previous experimental evidence on triblock copolymers containing a central block of alanines, and with earlier theoretical calculations.  相似文献   

11.
The effects of proline and X-Pro peptide bond conformations on the fluorescence properties of tyrosine in peptides corresponding to parts of a proposed chain-folding initiation site in bovine pancreatic ribonuclease A are examined by time-resolved and steady-state fluorescence spectroscopy. In peptides with Tyr-Pro sequences, the conformational constraints of proline on a preceding residue result in significant fluorescence quenching for both trans and cis peptide bond conformations. Small peptides containing Pro-Tyr sequences, on the other hand, do not exhibit fluorescence quenching compared to Ac-Tyr-NHMe. Studies of fluorescence decay in the tryptic fragment of performic acid oxidized ribonuclease corresponding to residues 105-124 (i.e., O-T-16) demonstrate the presence of at least two environments of the single tyrosine chromophore (in the sequence Asn113-Pro114-Tyr115). In these two (ensemble-averaged) environments, tyrosine has shorter and longer lifetimes, respectively, than in Ac-Tyr-NHMe. The fluorescence heterogeneity in O-T-16 does not correlate with X-Pro cis/trans conformational heterogeneity that can be detected by nuclear magnetic resonance (NMR) spectroscopy. Instead, the fluorescence heterogeneity in O-T-16 arises from the presence of multiple conformations with the same X-Pro peptide bond conformations which interconvert rapidly on the 1H NMR time scale (tau much less than 1 ms) but are distinguishable on the fluorescence lifetime time scale (tau greater than or equal to 1 ns). From comparisons with the tyrosine fluorescence decay of smaller synthetic peptides, it is concluded that the long-lifetime tyrosine fluorescence component of O-T-16 arises from interactions involving residues outside the Asn113-Pro114-Tyr115-Val116-Pro117 sequence, which either stabilize particular local conformations in the vicinity of Tyr115 or act directly to protect Tyr115 from efficient fluorescence quenching. The short-lifetime component of O-T-16 is also observed for the pentapeptide Ac-Asn-Pro-Tyr-Val-Pro-NHMe. The data provide evidence for a nonrandom polypeptide conformation of O-T-16 under conditions of solvent pH and temperature at which the complete disulfide-intact ribonuclease molecule is fully folded. Implications of this work for the interpretation of fluorescence-detected unfolding experiments are discussed.  相似文献   

12.
13.
The solution structure of eight cyclic pentapeptides has been determined by two-dimensional 1H-NMR spectroscopy combined with spectra simulations and restrained molecular dynamic simulations. Six of the cyclic pentapeptides were derived from the C-terminal cholecystokinin fragment CCK-4 enlarged with Asp1 resulting in the sequence (Asp-Trp-Met-Asp-Phe), one L-amino acid after the other was substituted by its D-analog. In addition, two peptides, including an all-L-amino-acid-containing cyclic pentapeptide, cyclo(Asp-Phe-Lys-Ala-Thr) and cyclo(Asp-Phe-Lys-Ala-D-Thr) were investigated. All D-amino-acid-containing peptides show beta II'-turn conformations with the D-amino acid in the i + 1 position, excepting the D-aspartic-acid-containing peptides. These two peptides are characterized by the lack of beta-turns at pH values less than 4, suggesting that D-aspartic acid in the full-protonized state avoids the formation of beta-turns in these compounds. At pH values greater than 5, a conformational change into the beta II'-turn conformation was also observed for these peptides. Conformations without beta-turns are expected for cyclic all-L pentapeptides, but both cyclo(Asp-Phe-Lys-Ala-Thr) and the D-Thr analog cyclo(Asp-Phe-Lys-Ala-D-Thr) exhibit beta II'-turn conformations around Thr-Asp and D-Thr-Asp. Thus cyclic all-L pentapeptides and those with one D-amino acid are able to form similar structures preferably with a beta II'-turn. The beta-turn formation in cyclic pentapeptides containing a D-aspartic acid is dependent on the ionization state. The relevance of the work to the design of beta'-turn mimetics is discussed.  相似文献   

14.
BACKGROUND: Among the S1 family of serine proteinases, the blood coagulation factor IXa (fIXa) is uniquely inefficient against synthetic peptide substrates. Mutagenesis studies show that a loop of residues at the S2-S4 substrate-binding cleft (the 99-loop) contributes to the low efficiency. The crystal structure of porcine fIXa in complex with the inhibitor D-Phe-Pro-Arg-chloromethylketone (PPACK) was unable to directly clarify the role of the 99-loop, as the doubly covalent inhibitor induced an active conformation of fIXa. RESULTS: The crystal structure of a recombinant two-domain construct of human fIXa in complex with p-aminobenzamidine shows that the Tyr99 sidechain adopts an atypical conformation in the absence of substrate interactions. In this conformation, the hydroxyl group occupies the volume corresponding to the mainchain of a canonically bound substrate P2 residue. To accommodate substrate binding, Tyr99 must adopt a higher energy conformation that creates the S2 pocket and restricts the S4 pocket, as in fIXa-PPACK. The energy cost may contribute significantly to the poor K(M) values of fIXa for chromogenic substrates. In homologs, such as factor Xa and tissue plasminogen activator, the different conformation of the 99-loop leaves Tyr99 in low-energy conformations in both bound and unbound states. CONCLUSIONS: Molecular recognition of substrates by fIXa seems to be determined by the action of the 99-loop on Tyr99. This is in contrast to other coagulation enzymes where, in general, the chemical nature of residue 99 determines molecular recognition in S2 and S3-S4. This dominant role on substrate interaction suggests that the 99-loop may be rearranged in the physiological fX activation complex of fIXa, fVIIIa, and fX.  相似文献   

15.
Geometry optimization, at the B3LYP/6-311++G** level of theory, was carried out on 4C1 and 1C4 chairs, (3,O)B and B(3,O) boats, and skew-boat conformations of alpha- and beta-D-glucopyranose. Similar calculations on 1,5-anhydro-D-glucitol allowed examination of the effect of removal of the 1-hydroxy group on the energy preference of the hydroxymethyl rotamers. Stable minimum energy boat conformers of glucose were found, as were stable skew boats, all having energies ranging from approximately 4-15 kcal/mol above the global energy 4C1 chair conformation. The 1C4 chair electronic energies were approximately 5-10 kcal/mol higher than the 4C1 chair, with the 1C4 alpha-anomers being lower in energy than the beta-anomers. Zero-point energy, enthalpy, entropy, and relative Gibbs free energies are reported at the harmonic level of theory. The alpha-anomer 4C1 chair conformations were found to be approximately 1 kcal/mol lower in electronic energy than the beta-anomers. The hydroxymethyl gt conformation was of lowest electronic energy for both the alpha- and beta-anomers. The glucose alpha/beta anomer ratio calculated from the relative free energies is 63/37%. From a numerical Hessian calculation, the tg conformations were found to be approximately 0.4-0.7 kcal/mol higher in relative free energy than the gg or gt conformers. Transition-state barriers to rotation about the C-5-C-6 bond were calculated for each glucose anomer with resulting barriers to rotation of approximately 3.7-5.8 kcal/mol. No energy barrier was found for the path between the alpha-gt and alpha-gg B(3,O) boat forms and the equivalent 4C1 chair conformations. The alpha-tg conformation has an energy minimum in the 1S3 twist form. Other boat and skew-boat forms are described. The beta-anomer boats retained their starting conformations, with the exception of the beta-tg-(3,O)B boat that moved to a skew form upon optimization.  相似文献   

16.
Conformational stability and mechanism of folding of ribonuclease T1   总被引:5,自引:0,他引:5  
Urea and thermal unfolding curves for ribonuclease T1 (RNase T1) were determined by measuring several different physical properties. In all cases, steep, single-step unfolding curves were observed. When these results were analyzed by assuming a two-state folding mechanism, the plots of fraction unfolded protein versus denaturant were coincident. The dependence of the free energy of unfolding, delta G (in kcal/mol), on urea concentration is given by delta G = 5.6 - 1.21 (urea). The parameters characterizing the thermodynamics of unfolding are: midpoint of the thermal unfolding curve, Tm = 48.1 degrees C, enthalpy change at Tm, delta Hm = 97 kcal/mol, and heat capacity change, delta Cp = 1650 cal/mol deg. A single kinetic phase was observed for both the folding and unfolding of RNase T1 in the transition and post-transition regions. However, two slow kinetic phases were observed during folding in the pre-transition region. These two slow phases account for about 90% of the observed amplitude, indicating that a faster kinetic phase is also present. The slow phases probably result from cis-trans isomerization at the 2 proline residues that have a cis configuration in folded RNase T1. These results suggest that RNase T1 folds by a highly cooperative mechanism with no structural intermediates once the proline residues have assumed their correct isomeric configuration. At 25 degrees C, the folded conformation is more stable than the unfolded conformations by 5.6 kcal/mol at pH 7 and by 8.9 kcal/mol at pH 5, which is the pH of maximum stability. At pH 7, the thermodynamic data indicate that the maximum conformational stability of 8.3 kcal/mol will occur at -6 degrees C.  相似文献   

17.
The conformation of the cyclic peptide Ac-Cys-Leu-Gla-Gla-Pro-Cys-NHMe, representing the 18-23 disulfide loop of bovine prothrombin, was studied by energy minimization with the ECEPP (Empirical Conformational Energy Program for Peptides) algorithm. Parameters for charge and geometry for the gamma-carboxyglutamic acid (Gla) residue were obtained for inclusion in the ECEPP data set. Construction of the 18-23 cyclic peptide, for which no crystal structure is available, was carried out by using a scheme that took advantage of the constraints imposed by the requirement of disulfide ring closure and utilized known low-energy structures of single residues and dipeptides. Both cis and trans isomers about the Gla 21-Pro 22 peptide bond were considered. The lowest-energy conformation found for the isolated 18-23 cyclic peptide with arbitrary reduction of the charge on the Gla residues (to simulate hydration roughly) is a trans form, differing in energy by 11 kcal-mol-1 from the lowest-energy cis form. However, when the energy calculation includes one model Ca2+ ion, X2+, introduced at a fixed distance of 2.3 A from a single oxygen atom of either of the side-chain carboxyl groups of Gla with the C delta-O-X2+ bond angle fixed at one of three values, the lowest-energy cis conformation is about 1 kcal-mol-1 lower in energy than the lowest-energy trans conformation; i.e. the two structures have similar energies. In these structures, four oxygen atoms, two from each Gla side-chain, approach the model Ca2+ ion closely, in a manner similar to that seen in crystals of calcium alpha-ethylmalonate (Zell, A., Einspahr, H. & Bugg, C.E. (1985) Biochemistry 24, 533-537). It appears that the binding of Ca2+ to the 18-23 cyclic peptide may alter the equilibrium between cis and trans structures such that the fraction of cis isomers is greater in the presence of Ca2+.  相似文献   

18.
Protein folding and binding is commonly depicted as a search for the minimum energy conformation. Modeling of protein complex structures by RosettaDock often results in a set of low-energy conformations near the native structure. Ensembles of low-energy conformations can appear, however, in other regions, especially when backbone movements occur upon binding. What then characterizes the energy landscape near the correct orientation? We applied a machine learning algorithm to distinguish ensembles of low-energy conformations around the native conformation from other low-energy ensembles. The resulting classifier, FunHunt, identifies the native orientation in 50/52 protein complexes in a test set. The features used by FunHunt teach us about the nature of native interfaces. Remarkably, the energy decrease of trajectories toward near-native orientations is significantly larger than for other orientations. This provides a possible explanation for the stability of association in the native orientation.  相似文献   

19.
Non-proline cis peptide bonds have been observed in numerous protein crystal structures even though the energetic barrier to this conformation is significant and no non-prolyl-cis/trans-isomerase has been identified to date. While some external factors, such as metal binding or co-factor interaction, have been identified that appear to induce cis/trans isomerization of non-proline peptide bonds, the intrinsic structural basis for their existence and the mechanism governing cis/trans isomerization in proteins remains poorly understood. Here, we report the crystal structure of a newly isolated neurotoxin, the scorpion alpha-like toxin Buthus martensii Karsch (BmK) M7, at 1.4A resolution. BmK M7 crystallizes as a dimer in which the identical non-proline peptide bond between residues 9 and 10 exists either in the cis conformation or as a mixture of cis and trans conformations in either monomer. We also determined the crystal structures of several mutants of BmK M1, a representative scorpion alpha-like toxin that contains an identical non-proline cis peptide bond as that observed in BmK M7, in which residues within or neighboring the cis peptide bond were altered. Substitution of an aspartic acid residue for lysine at residue 8 in the BmK M1 (K8D) mutant converted the cis form of the non-proline peptide bond 9-10 into the trans form, revealing an intramolecular switch for cis-to-trans isomerization. Cis/trans interconversion of the switch residue at position 8 appears to be sequence-dependent as the peptide bond between residues 9 and 10 retains its wild-type cis conformation in the BmK M1 (K8Q) mutant structure. The structural interconversion of the isomeric states of the BmK M1 non-proline cis peptide bond may relate to the conversion of the scorpion alpha-toxins subgroups.  相似文献   

20.
Proline occurs frequently in transmembrane alpha-helices of transport and receptor proteins even though statistical surveys demonstrate the overwhelming preference of this residue for a non-alpha-helical, hydrophilic environment. As a result, membrane-buried proline has been proposed to be functionally important, with function arising from structural discontinuity or destabilization of the helix. Destabilization may occur by Pro-mediated conformational transitions between discrete states, and may be manifested in membrane protein systems through reversible processes such as channel opening and closing or signal transduction. In this study, computer modeling of a model transmembrane alpha-helix, (Ala)8-Leu-Pro-Phe-(Ala)8, in a medium of low polarity (dielectric = 2), is used to examine the occurrence and energetic accessibility of Pro-mediated conformational interconversions. Leu psi and chi 1, Pro psi, and Phe phi and chi 1 torsion angles were assigned random values so that a data base of 200 conformations for each of the cis and trans states was generated. The conformations were minimized and low-energy structures organized into families. This analysis demonstrated that the most populated lowest energy family is the Trans-I conformation, corresponding to proline in a kinked alpha-helix. Two additional trans structures, Trans-II and Trans-III, as well as a cis conformation, Cis-I, are also energetically competitive. Interconversions between the trans states could thus be mediated by changes at a single torsion angle, accompanied by minor local hydrogen-bonding rearrangements. This work substantiates that membrane-buried proline can provide the basis for conformational transitions between discrete alpha-helix-based structures in a nonpolar environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号