首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Biological oxidation of organic dyes is important for textile industry wastewater treatment. The aim of this work was to assess the biodegradation kinetics of a specific azo-dye, p-aminoazobenzene. The degradation of p-aminoazobenzene by Bacillus subtilis was examined through batch experiments in order to investigate the effect of p-aminoazobenzene on the bacterial growth rate and elucidate the mechanism of dye degradation. The results proved that B. subtilis cometabolizes p-aminoazobenzene in the presence of glucose as carbon source, producing aniline and p-phenylenediamine as the nitrogen–nitrogen double bond is broken. The azo-dye was found to act as an inhibitor to microbial growth. A mathematical model was developed that describes cellular growth, glucose utilization, p-aminoazobenzene degradation and product formation. Received 26 July 1996/ Accepted in revised form 14 May 1997  相似文献   

3.
4.
5.
A Bacillus subtilis culture incubated anaerobically in nitrate-containing medium lost viability during the first 3 days but recovered thereafter. A flavohemoglobin mutant showed very poor survival under these conditions unless the cells were prevented from carrying out nitrate respiration.  相似文献   

6.
Nigericin, monensin, valinomycin + carbonyl-cyanide-m-chlorophenylhydrazone and gramicidin inhibit the respiration of Bacillus subtilis cells incubated with NAD-dependent substrates or succinate, but not with ascorbate + N,N,N',N'-tetramethyl-p- phenylene-diamine. The level of inhibition was decreased by potassium ions and, in a lower degree, by sodium or ammonium ions. The results obtained suggest that the respiration of Bacillus subtilis depends on the presence of monovalent cations whose effects seem to be directed at complexes I, III and probably complex II of the respiratory chain.  相似文献   

7.
Bacillus subtilis has a bifurcated respiratory chain composed of a cytochrome branch and a quinol oxidase branch. The respiratory complexes of this bacterium have been elucidated mostly by the analysis of the genome and by the isolation of individual complexes. The supramolecular organization of this respiratory chain is not known. In this work, we have analyzed the organization of the supercomplex in membranes isolated from B. subtilis grown in aerobic conditions in a medium with 3?% succinate. We used two different native electrophoretic techniques, clear native electrophoresis (CNE) and blue native electrophoresis (BNE). Using a heme-specific stain and Coomassie blue stain with in-gel activity assays followed by mass spectrometry, we identified the proteins resolved in both the first and second dimensions of the electrophoreses to detect the supercomplexes. We found that complexes b ( 6 ) c and caa ( 3 ) form a very high molecular mass supercomplex with the membrane-bound cytochrome c ( 550 ) and with ATP synthase. Most of the ATP synthase was found as a monomer. Succinate dehydrogenase was identified within a high molecular band between F(0)F(1) and F(1) and together with nitrate reductase. The type-2 NADH dehydrogenase was detected within a low molecular mass band. Finally, the quinol oxidase aa ( 3 ) seems to migrate as an oligomer of high molecular mass.  相似文献   

8.
Clements LD  Streips UN  Miller BS 《Proteomics》2002,2(12):1724-1734
A comparative investigation of protein expression by two-dimensional gel electrophoresis was conducted between Bacillus subtilis cultures grown in defined medium under aerobic, anaerobic nitrate respiration, or fermentation conditions. Defined medium specific for either nitrate respiration or fermentation allowed distinction between proteins induced by each individual growth process. Our differential protein profiling analysis between aerobic and anaerobic conditions showed that anaerobic fermentation induced at least 44 proteins and nitrate respiration induced at least 19 proteins compared to aerobic controls. Certain proteins were specifically induced during nitrate respiration or fermentation, while others were induced by both anaerobic processes. Eleven proteins induced by nitrate respiration and/or fermentation were identified by peptide mass matching using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteins encoded by feuA, hmp, and ytkD were induced by nitrate respiration. Proteins encoded by pyrR, sucD, trpC, and ywjH were induced by fermentation. Proteins encoded by acuB, pdhC, ydjL, and yvyD were induced by nitrate respiration and fermentation. This proteomic analysis has provided a more complete characterization of B. subtilis anaerobic growth and increased our understanding of its metabolic pathways of nitrate respiration and fermentation.  相似文献   

9.
10.
Clifton, C. E. (Stanford University, Stanford, Calif.), and John Cherry. Influence of glutamic acid on the endogenous respiration of Bacillus subtilis. J. Bacteriol. 91:546-550. 1966.-Amino acids serve as the major initial endogenous substrate for Bacillus subtilis. The endogenous activity of freshly harvested washed cells is high and falls off rapidly with time of shaking at 30 C to lower but still significant levels. The rate of O(2) consumption after the addition of glutamic acid also decreases as the cells age, but more slowly than noted for endogenous respiration. When cells were fed glutamate as soon as possible after harvesting, an apparent stimulation of endogenous respiration was noted. However, endogenous activity was inhibited if the cell suspensions were shaken for at least 1 hr before addition of the glutamate. Similar results were obtained with glycerol or glucose as exogenous substrates. Variation in rates of respiration with age of the cells, inherent instability of B. subtilis, and possible utilization of substances initially excreted by the cells appear to account for the variations noted regarding the influence of an exogenous substrate on endogenous respiration.  相似文献   

11.
12.
Ye RW  Tao W  Bedzyk L  Young T  Chen M  Li L 《Journal of bacteriology》2000,182(16):4458-4465
Bacillus subtilis can grow under anaerobic conditions, either with nitrate or nitrite as the electron acceptor or by fermentation. A DNA microarray containing 4,020 genes from this organism was constructed to explore anaerobic gene expression patterns on a genomic scale. When mRNA levels of aerobic and anaerobic cultures during exponential growth were compared, several hundred genes were observed to be induced or repressed under anaerobic conditions. These genes are involved in a variety of cell functions, including carbon metabolism, electron transport, iron uptake, antibiotic production, and stress response. Among the highly induced genes are not only those responsible for nitrate respiration and fermentation but also those of unknown function. Certain groups of genes were specifically regulated during anaerobic growth on nitrite, while others were primarily affected during fermentative growth, indicating a complex regulatory circuitry of anaerobic metabolism.  相似文献   

13.
The Bacillus subtilis narA locus was shown to include narQ and narA. The putative product of narQ is similar to FdhD, which is required for formate dehydrogenase activity in Escherichia coli. NarA showed homology to MoaA, a protein involved in biosynthesis of the molybdenum cofactor for nitrate reductase and formate dehydrogenase. Analysis of mutants showed that narA but not narQ is required for both nitrate assimilation and respiration.  相似文献   

14.
We have sequenced the stage V sporulation specific gene spoVG in both Bacillus megaterium and Bacillus subtilis. The open reading frames encode polypeptides of 96 and 97 residues, respectively, and have an 88.6% amino acid identity. Both genes have putative rho-independent terminators. No significant amino acid or nucleotide homology of either gene was found when compared with sequences contained in either the Genbank or EMBL data bases.  相似文献   

15.
Three enzymes with L- and one enzyme with D-aminopeptidase (EC 3.4.11; alpha-aminoacyl peptide hydrolase) activity have been separated from each other and partially purified from Bacillus subtilis 168 W.T., distinguished with respect to their molecular weights and catalytic properties, and studied in relation to the physiology of this bacterium. One L-aminopeptidase, designated aminopeptidase I, has a molecular weight of 210,000 +/- 20,000, is produced early in growth, and hydrolyzes L-alanyl-beta-naphthylamide most rapidly. Another, designated aminopeptidase II, molecular weight 67,000 +/- 10,000, is also produced early in growth and hydrolyzes L-lysyl-beta-naphthylamide most rapidly. A third, aminopeptidase III, molecular weight 228,000 +/- 20,000, is produced predominantly in early stationary phase and most efficiently utilizes L-alpha-aspartyl-beta-naphthylamide as substrate. The synthesis of aminopeptidase III in early stationary phase suggests that selective catabolism of peptides occurs at this time, perhaps related to the cessation of growth or the onset of early sporulation-associated events. A D-aminopeptidase which hydrolyzes the carboxyl-blocked dipeptide D-alanyl-D-alanyl-beta-naphthylamide (as well as D-alanyl-beta-naphthylamide and D-alanyl-D-alanyl-D-alanine) has also been identified, separated from aminopeptidase II, and purified 170-fold. D-Aminopeptidase, molecular weight 220,000 +/- 20,000, is localized predominantly in the cell wall and periplasm of the organism. This evidence and the variation of the activity during the growth cycle suggest an important function in cell wall or peptide antibiotic metabolism.  相似文献   

16.
17.
Bacteriophages of Bacillus subtilis.   总被引:20,自引:1,他引:19       下载免费PDF全文
  相似文献   

18.
Microorganisms have evolved intricate signal transduction mechanisms that respond both to dioxygen per se and to the consequences imparted by dioxygen on the metabolism of the cell. Escherichia coli provides examples of both types of signal sensing mechanisms, including FNR and the Arc system. The factors involved in these diverse sensory systems are proving to have a pervasive impact on controlling gene expression and cellular physiology. Similar signal transduction systems are prevalent in a diverse range of microorganisms.  相似文献   

19.
A periplasm in Bacillus subtilis.   总被引:6,自引:2,他引:4       下载免费PDF全文
The possibility of there being a periplasm in Bacillus subtilis, in the distinct cell compartment bounded by the cytoplasmic membrane and the thick cell wall, has been investigated quantitatively and qualitatively. Cytoplasmic, membrane, and protoplast supernatant fractions were obtained from protoplasts which were prepared isotonically from cells grown under phosphate limitation. The contents of the protoplast supernatant fraction represent an operational definition of the periplasm. In addition, this cell fraction includes cell wall-bound proteins, exoproteins in transit, and contaminating cytoplasmic proteins arising through leakage from, or lysis of a fraction of, protoplasts. The latter, measured by assay of enzyme markers and by radiolabeled RNA and protein, was found to represent 7.6% of total cell protein, yielding a mean of 9.8% +/- 4.8% for B. subtilis 168 protein considered periplasmic. Qualitatively, after subjection of all cell fractions to polyacrylamide gel electrophoresis, RNase and DNase, zymographs revealed that (i) each cell fraction had a unique profile of nucleases and (ii) multiple species and a major fraction of both nucleases were concentrated in the periplasm. We conclude that the operationally defined periplasmic fraction corresponds closely, both quantitatively and qualitatively, to the contents of the periplasm of Escherichia coli. We discuss evidence that the maintenance of the components of this surface compartment in B. subtilis is compatible with the thick negatively charged cell wall acting as an external permeability barrier.  相似文献   

20.
Multiple catalases in Bacillus subtilis.   总被引:22,自引:13,他引:9       下载免费PDF全文
Vegetative cells of Bacillus subtilis in logarithmic growth phase produced one catalase, labeled catalase 1, with a nondenatured molecular weight of 205,000. As growth progressed, other activity bands with slower electrophoretic mobilities on polyacrylamide gels appeared, including a series of bands with a common nondenatured molecular weight of 261,000, collectively labeled catalase 2, and a minor band, with a molecular weight of 387,000, labeled catalase 3. Purified spores contained only catalase 2, and it was not produced in spo0A- or spo0F-containing mutants. Strains deficient in catalase 1 or catalase 2 or both were selected after mutagenesis. Sensitivities of the two main catalases to NaCN, NaN3, hydroxylamine, and temperature were similar, but the apparent Kms for H2O2 differed, being 36.6 and 64.4 mM, respectively, for catalase 1 and catalase 2. The levels of catalase 1 increased 15-fold during growth into stationary phase and could be increased 30-fold by the addition of H2O2 to the medium. Catalase 2, which was not affected by H2O2, appeared only after the cells had reached stationary phase, and the maximum levels were only half of the basal level of catalase 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号