首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent data suggest an inverse epidemiological association between intake of flavanol-rich cocoa products and cardiac mortality. Potential beneficial effect of cocoa may be attributed to flavanol-mediated improvement of endothelial function, as well as to enhancement of bioavailability and bioactivity of nitric oxide in vivo. ( ? )-Epicatechin is one bioactive flavanol found in cocoa. This review deals with protective actions of ( ? )-epicatechin on two key processes in atherogenesis, oxidation of LDL and damage to endothelial cell by oxidized LDL (oxLDL), with emphasis on data from this laboratory. ( ? )-Epicatechin not only abrogates or attenuates LDL oxidation but also counteracts deleterious actions of oxLDL on vascular endothelial cells. These protective actions are only partially shared by other vasoprotective agents such as vitamins C and E or aspirin. Thus, ( ? )-epicatechin appears to be a pleiotropic protectant for both LDL and endothelial cells.  相似文献   

2.
Recent data suggest an inverse epidemiological association between intake of flavanol-rich cocoa products and cardiac mortality. Potential beneficial effect of cocoa may be attributed to flavanol-mediated improvement of endothelial function, as well as to enhancement of bioavailability and bioactivity of nitric oxide in vivo. ( - )-Epicatechin is one bioactive flavanol found in cocoa. This review deals with protective actions of ( - )-epicatechin on two key processes in atherogenesis, oxidation of LDL and damage to endothelial cell by oxidized LDL (oxLDL), with emphasis on data from this laboratory. ( - )-Epicatechin not only abrogates or attenuates LDL oxidation but also counteracts deleterious actions of oxLDL on vascular endothelial cells. These protective actions are only partially shared by other vasoprotective agents such as vitamins C and E or aspirin. Thus, ( - )-epicatechin appears to be a pleiotropic protectant for both LDL and endothelial cells.  相似文献   

3.
Oxygenated cholesterols (oxysterols) formed during oxidation of low-density lipoprotein (LDL) are associated with endothelial dysfunction and atherogenesis. We compared the profile of oxysterols in modified human LDL obtained on reaction with myeloperoxidase/H2O2 plus nitrite (MPO/H2O2/nitrite-oxLDL) with that on Cu2+ -catalyzed oxidation. The 7beta-hydroxycholesterol/7-ketocholesterol ratio was markedly higher in MPO/H2O2/nitrite-oxLDL than in Cu2+ -oxidized LDL (7.9 +/- 3.0 versus 0.94 +/- 0.10). Like MPO/H2O2/nitrite-oxLDL, 7beta-hydroxycholesterol was cytotoxic toward endothelial cells through eliciting oxidative stress. Cytotoxicity was accompanied by DNA fragmentation and was prevented by the NADPH oxidase inhibitor apocynin, suggesting stimulation of NADPH oxidase-mediated O2-* formation. 7-Ketocholesterol was only cytotoxic when added alone, whereas a 1:1-mixture with 7beta-hydroxycholesterol surprisingly was noncytotoxic. We conclude from our data that (i) 7beta-hydroxycholesterol is a pivotal cytotoxic component of oxidized LDL, (ii) 7-ketocholesterol protects against 7beta-hydroxycholesterol in oxysterol mixtures or oxLDL, (iii) the 7beta-hydroxycholesterol/7-ketocholesterol ratio is a crucial determinant for cytotoxicity of oxidized LDL species and oxysterol mixtures, and (iv) the low share of 7-ketocholesterol explains the higher cytotoxicity of MPO/H2O2/nitrite-oxLDL than other forms of oxidized LDL. The dietary polyphenol (-)-epicatechin inhibited not only formation but also cytotoxic actions of both oxLDL and oxysterols.  相似文献   

4.
Dietary (-)-epicatechin is known to improve bioactivity of (*)NO in arterial endothelium of humans, but the mode of action is unclear. We used the fluorophore 4,5-diaminofluorescein diacetate to visualize the (*)NO level in living human umbilical vein endothelial cells (HUVEC). Untreated cells showed only a weak signal, whereas pretreatment with (-)-epicatechin (10 microM) or apocynin (100 microM) elevated the (*)NO level. The effects were more pronounced when the cells were treated with angiotensin II with or without preloading of the cells with (*)NO via PAPA-NONOate. While (-)-epicatechin scavenged O2(*-), its O-methylated metabolites prevented O2(*-) generation through inhibition of endothelial NADPH oxidase activity, even more strongly than apocynin. From the effect of 3,5-dinitrocatechol, an inhibitor of catechol-O-methyltransferase (COMT), on HUVEC it is concluded that (-)-epicatechin serves as 'prodrug' for conversion to apocynin-like NADPH oxidase inhibitors. These data indicate an (*)NO-preserving effect of (-)-epicatechin via suppression of O2(*-)-mediated loss of (*)NO.  相似文献   

5.
Lipid peroxidation (LPO) of low-density lipoprotein (LDL) is believed to be a pivotal process rendering this plasma lipoprotein atherogenic. Several endogenous factors have been proposed to mediate LPO of LDL, among them myeloperoxidase (MPO), which is active in atherosclerotic lesions, and the plasma level of which has been proposed to be a prognostic parameter for cardiac events. Nitrite, a major oxidation product of nitric oxide, is substrate of MPO and a cofactor of MPO-mediated LPO under physiological conditions. Dietary flavonoids including (-)-epicatechin, a major flavan-3-ol in cocoa products, grapes and wine, are substrates of MPO as well as potent inhibitors of LPO in LDL at micromolar concentrations. Moreover, they strongly suppress protein tyrosine nitration of LDL by MPO/nitrite or peroxynitrite. By blunting undesirable MPO-mediated actions of nitrite, presumably via scavenging of the strong prooxidant and nitrating *NO2 radical, dietary flavonoids modulate NO metabolism in a favorable direction and thus counteract endothelial dysfunction. This article gives a survey on recent progress in this field with special reference to own recently published work.  相似文献   

6.
The ubiquitous free radical nitric oxide (NO) plays an important role in many biological processes, including the regulation of both vascular tone and inflammatory response; however, its role in the effects of cigarette smoke exposure on atherosclerosis remains unclear. Our aim was to study the mechanisms of NO regulation in endothelial cells in response to cigarette smoke exposure in vitro. Using human umbilical vein endothelial cells (HUVEC), we have demonstrated that combining non-toxic concentrations of cigarette smoke bubbled through PBS (smoke-bubbled PBS [sbPBS]) with native LDL (nLDL) significantly reduces the amount of bioavailable NO. The effect is comparable to that seen with oxidized LDL (oxLDL), but has not been seen with sbPBS or nLDL alone. Mechanistic investigations showed that the combination of sbPBS+nLDL did not reduce the amount of endothelial nitric oxide synthase (eNOS), but did inhibit its enzymatic activity. Concomitantly, both sbPBS+nLDL and oxLDL significantly increased the production of reactive oxygen species (ROS) in the form of superoxide anions (()O(2)(-)) and peroxynitrite (ONOO(-)) in HUVEC. Selective inhibition of NADPH oxidase prevented this response. Incubation of sbPBS+nLDL revealed the formation of 7-ketocholesterol (7-KC) and 7-hydroxycholesterol, which are indicators for oxidative modification of LDL. This could explain the reported increase in circulatory levels of oxLDL in smokers. Our results suggest that reduction of functional NO in response to a combination of sbPBS+nLDL is secondary to both reduction of eNOS activity and stimulation of NADPH oxidase activity. Because sbPBS alone showed no effect on eNOS activity or ROS formation, nLDL should be included in cigarette-smoke-related mechanistic in vitro experiments on endothelial cells to be more reflective of the clinical situation.  相似文献   

7.
The action of oxidatively modified low-density lipoprotein on vascular endothelial cells has been proposed to be a crucial process leading to endothelial dysfunction and atherogenesis. However, the biochemical mechanism for such action is not clear. We have previously shown that arginine uptake and metabolism are major determinants of endothelial function in heart failure and hypertension. In the present study we therefore aimed to assess the effects of oxidized LDL, a major pro-atherogenic molecule, on endothelial l-arginine metabolism and its uptake. Endothelial cells were exposed to oxidized LDL or native LDL for 24h, and the resultant effects on (1) the intracellular content of arginine and its major metabolites including citrulline, N(G)-hydroxy-l-arginine, asymmetric dimethylarginine, symmetric dimethylarginine and ornithine, (2) [3H]-l-arginine uptake and, (3) the pattern of distribution of cationic amino acid transporter 1, the principal l-arginine transporter, by confocal microscopy. Oxidized LDL (100 microg/mL) reduced intracellular arginine and N(G)-hydroxy-l-arginine contents by 56 and 71% (P<0.05), respectively, with a concomitant 205% increase in ADMA (P<0.05). In conjunction, oxidized LDL reduced endothelial uptake of [3H]-arginine by 60%. Furthermore, incubation of endothelial cells with oxLDL led to internalization of cationic amino acid transporter 1. We demonstrate a novel mechanism, reduced l-arginine transport, by which oxidized LDL impairs the ability of the endothelium to generate nitric oxide.  相似文献   

8.
Oxidative modification of low-density lipoprotein (LDL) is a pivotal process in early atherogenesis and can be brought about by myeloperoxidase (MPO), which is capable of reacting with nitrite, a NO metabolite. We studied MPO-mediated formation of conjugated dienes in isolated human LDL in dependence on the concentrations of nitrite and chloride. This reaction was strongly stimulated by low concentrations (5-50 microM) of nitrite which corresponds to the reported concentration in the arterial vessel wall. Under these conditions no protein tyrosine nitration occurred; this reaction required much higher nitrite concentrations (100 microM-1 mM). Chloride neither supported lipid peroxidation alone nor was its presence mandatory for the effect of nitrite. We propose a prominent role of lipid peroxidation for the proatherogenic action of the MPO/nitrite system, whereas peroxynitrite may be competent for protein tyrosine nitration of LDL. Monomeric and oligomeric flavan-3-ols present in cocoa products effectively counteracted, at micromolar concentrations, the MPO/nitrite-mediated lipid peroxidation of LDL. Flavan-3-ols also suppressed protein tyrosine nitration induced by MPO/nitrite or peroxynitrite as well as Cu2+-mediated lipid peroxidation of LDL. This multi-site protection by (-)-epicatechin or other flavan-3-ols against proatherogenic modification of LDL may contribute to the purported beneficial effects of dietary flavan-3-ols for the cardiovascular system.  相似文献   

9.
The consumption of cacao-derived (i.e., cocoa) products provides beneficial cardiovascular effects in healthy subjects as well as individuals with endothelial dysfunction such as smokers, diabetics, and postmenopausal women. The vascular actions of cocoa are related to enhanced nitric oxide (NO) production. These actions can be reproduced by the administration of the cacao flavanol (-)-epicatechin (EPI). To further understand the mechanisms behind the vascular action of EPI, we investigated the effects of Ca(2+) depletion on endothelial nitric oxide (NO) synthase (eNOS) activation/phosphorylation and translocation. Human coronary artery endothelial cells were treated with EPI or with bradykinin (BK), a well-known Ca(2+)-dependent eNOS activator. Results demonstrate that both EPI and BK induce increases in intracellular calcium and NO levels. However, under Ca(2+)-free conditions, EPI (but not BK) is still capable of inducing NO production through eNOS phosphorylation at serine 615, 633, and 1177. Interestingly, EPI-induced translocation of eNOS from the plasmalemma was abolished upon Ca(2+) depletion. Thus, under Ca(2+)-free conditions, EPI can stimulate NO synthesis independent of calmodulin binding to eNOS and of its translocation into the cytoplasm. We also examined the effect of EPI on the NO/cGMP/vasodilator-stimulated phosphoprotein (VASP) pathway activation in isolated Ca(2+)-deprived canine mesenteric arteries. Results demonstrate that under these conditions, EPI induces the activation of this vasorelaxation-related pathway and that this effect is inhibited by pretreatment with nitro-L-arginine methyl ester, suggesting a functional relevance for this phenomenon.  相似文献   

10.
The action of oxidatively modified low-density lipoprotein (oxLDL) on vascular endothelial cells has been proposed to be a crucial process leading to endothelial dysfunction and atherogenesis. OxLDL was shown here to elicit oxidative stress in bovine aortic endothelial cells or human umbilical vein endothelial cells, as judged by an increase in 2',7'-dichlorofluorescein fluorescence and elevated levels of carbonylated, nitrated, and 2-hydroxynonenal-coupled proteins. These effects were sensitive to apocynin, indicating involvement of NADPH oxidase. A 170-kDa polypeptide carbonylated upon exposure of cells to oxLDL was identified by immunoprecipitation as EGF receptor. Immunocytochemical visualization by confocal microscopy revealed the highest levels of modified proteins in the perinuclear region. Exposure of endothelial cells to oxLDL led to modulation of the expression levels of *NO synthases; the endothelial isoform (eNOS) was down-regulated via proteasomal degradation, whereas the inducible isoform (iNOS) was up-regulated in an enzymatically active state. eNOS protein was found to be both carbonylated and nitrated upon exposure of cells to oxLDL. iNOS contributed to the generation of modified proteins as judged by the effects of the selective inhibitor L-NIO. These oxLDL-elicited changes in vascular endothelial cells described were suppressed by (-)-epicatechin, a dietary polyphenol, which inhibited NADPH oxidase activity in these cells.  相似文献   

11.
Hyperhomocysteinemia is believed to induce endothelial dysfunction and promote atherosclerosis; however, the pathogenic mechanism has not been clearly elucidated. In this study, we examined the molecular mechanism by which homocysteine (HCy) causes endothelial cell apoptosis and by which nitric oxide (NO) affects HCy-induced apoptosis. Our data demonstrated that HCy caused caspase-dependent apoptosis in cultured human umbilical vein endothelial cells, as determined by cell viability, nuclear condensation, and caspase-3 activation and activity. These apoptotic characteristics were correlated with reactive oxygen species (ROS) production, lipid peroxidation, p53 and Noxa expression, and mitochondrial cytochrome c release following HCy treatment. HCy also induced p53 and Noxa expression and apoptosis in endothelial cells from wild type mice but not in the p53-deficient cells. The NO donor S-nitroso-N-acetylpenicillamine, adenoviral transfer of inducible NO synthase gene, and antioxidants (alpha-tocopherol and superoxide dismutase plus catalase) but not oxidized SNAP, 8-Br-cGMP, nitrite, and nitrate, suppressed ROS production, p53-dependent Noxa expression, and apoptosis induced by HCy. The cytotoxic effect of HCy was decreased by small interfering RNA-mediated suppression of Noxa expression, indicating that Noxa up-regulation plays an important role in HCy-induced endothelial cell apoptosis. Overexpression of inducible NO synthase increased the formation of S-nitroso-HCy, which was inhibited by the NO synthase inhibitor N-monomethyl-l-arginine. Moreover, S-nitroso-HCy did not increase ROS generation, p53-dependent Noxa expression, and apoptosis. These results suggest that up-regulation of p53-dependent Noxa expression may play an important role in the pathogenesis of atherosclerosis induced by HCy and that an increase in vascular NO production may prevent HCy-induced endothelial dysfunction by S-nitrosylation.  相似文献   

12.
Aged garlic extract attenuates intracellular oxidative stress.   总被引:5,自引:0,他引:5  
N Ide  B H Lau 《Phytomedicine》1999,6(2):125-131
Oxidation of low density lipoprotein (LDL) has been recognized as playing an important role in the initiation and progression of atherosclerosis. We recently reported that aged garlic extract (AGE) inhibited LDL oxidation and minimized oxidized LDL-induced cell injury. In this study, the antioxidant effects of AGE were further examined using bovine pulmonary artery endothelial cells (PAEC) and murine macrophages. Lactate dehydrogenase (LDH) release, as an index of membrane injury, and intracellular glutathione (GSH) levels were determined. Oxidized LDL (Ox-LDL) caused an increase of LDH release and depletion of GSH. Pretreatment with AGE prevented these changes. AGE exhibited an inhibition of Ox-LDL-induced peroxides in PAEC. AGE suppressed peroxides in murine Macrophage (J774 cells) dose-dependently. The J774 cells were also incubated with AGE, interferon-gamma (IFN-gamma) and lipopolysaccharide (LPS) and nitric oxide (NO) production was measured. AGE inhibited NO production in J774 cells. In a cell free system, AGE was shown to scavenge H2O2 dose-dependently. Our data demonstrate that AGE can protect the endothelial cells from oxidized LDL-induced injury by preventing depletion of intracellular GSH and by removing peroxides. AGE also reduces levels of NO and peroxides in macrophages. These data suggest that AGE is a useful protective agent against cytotoxicity associated with Ox-LDL and NO, and it may thus be useful for the prevention of atherosclerosis and cardiovascular diseases.  相似文献   

13.
Asymmetric dimethylarginine (ADMA), the endogenous nitric oxide synthase inhibitor, is thought to be a key factor contributing to endothelial dysfunction. Tea catechins can cause an endothelium-dependent vasorelaxation. The present study examined the effect of epigallocatechin gallate (EGCG), the major component of tea catechins, on endothelial dysfunction induced by native low density lipoprotein (LDL) in rats and oxidized LDL (ox-LDL) in cultured endothelial cells, and whether the protective effect of EGCG is related to reduction of ADMA level. A single injection of LDL (4 mg x kg(-1), i.v.) markedly reduced endothelium-dependent relaxation and the serum nitrite/nitrate (NO) level, and increased serum concentrations of ADMA, malondialdehyde (MDA), and tumor necrosis factor-alpha (TNF-alpha). EGCG (10 or 50 mg x kg(-1), i.p.) significantly attenuated the inhibition of vasodilator response to acetylcholine and the decreased serum nitrite/nitrate level, and reduced the elevated levels of ADMA, MDA, and TNF-alpha. Exposure of endothelial cells to ox-LDL (100 microg x mL(-1)) for 24 h markedly increased the medium levels of lactate dehydrogenase (LDH), ADMA, TNF-alpha, and MDA, and decreased the level of nitrite/nitrate in the medium and the activity of dimethylarginine dimethylaminohydrolase (DDAH) in the endothelial cells. EGCG (10 and 100 microg x mL(-1)) significantly decreased the levels of LDH, ADMA, TNF-alpha, and MDA, and increased the level of nitrite/nitrate and the activity of DDAH. These results suggest that EGCG protects endothelial dysfunction induced by native LDL in vivo or by ox-LDL in endothelial cells, and the protective effect of EGCG on the endothelium is related to decrease in ADMA level via increasing of DDAH activity.  相似文献   

14.
LDL deposition in the subendothelium of arterial walls is the initial event in the development of atherosclerosis. The deposited LDL undergoes oxidative modification by arterial wall cells to become oxidized LDL and consequently contributes to atherosclerotic formation. Using mouse strains C57BL/6J (B6) and C3H/HeJ (C3H), which differ markedly in susceptibility to atherosclerosis, we determined whether variation in subendothelial retention of apolipoprotein B (apoB)-containing lipoproteins constitutes a genetic component in atherosclerosis. Lipoprotein retention was quantitated by Western blot analysis to detect the presence of apoB in aortic walls before foam cells developed. In both dietary and apoE-deficient models, B6 mice exhibited up to a 2-fold increase of apoB in the aortic wall compared with C3H mice. This increase could not be attributed to differences in plasma lipid levels of the two strains. In vitro, endothelial cells from C3H mice took up more acetylated and oxidized LDL but not native LDL and converted more native LDL to oxidized LDL than did endothelial cells from B6 mice. C3H mice expressed more scavenger receptor A in their aortic wall than B6 mice. Thus, variation in the subendothelial retention of apoB-containing lipoproteins cannot explain the dramatic difference in atherosclerosis susceptibility between B6 and C3H mice, and endothelial cells may play a role in alleviating lipid accumulation in arterial walls.  相似文献   

15.
Hypochlorous acid/hypochlorite, generated by the myeloperoxidase/H(2)O(2)/halide system of activated phagocytes, has been shown to oxidize/modify low density lipoprotein (LDL) in vitro and may be involved in the formation of atherogenic lipoproteins in vivo. Accordingly, hypochlorite-modified (lipo)proteins have been detected in human atherosclerotic lesions where they colocalize with macrophages and endothelial cells. The present study investigates the influence of hypochlorite-modified LDL on endothelial synthesis of nitric oxide (NO) measured as formation of citrulline (coproduct of NO) and cGMP (product of the NO-activated soluble guanylate cyclase) upon cell stimulation with thrombin or ionomycin. Pretreatment of human umbilical vein endothelial cells with hypochlorite-modified LDL led to a time- and concentration-dependent inhibition of agonist-induced citrulline and cGMP synthesis compared with preincubation of cells with native LDL. This inhibition was neither due to a decreased expression of endothelial NO synthase (eNOS) nor to a deficiency of its cofactor tetrahydrobiopterin. Likewise, the uptake of l-arginine, the substrate of eNOS, into the cells was not affected. Hypochlorite-modified LDL caused remarkable changes of intracellular eNOS distribution including translocation from the plasma membrane and disintegration of the Golgi location without altering myristoylation or palmitoylation of the enzyme. In contrast, cyclodextrin known to deplete plasma membrane of cholesterol and to disrupt caveolae induced only a disappearance of eNOS from the plasma membrane that was not associated with decreased agonist-induced citrulline and cGMP formation. The present findings suggest that mislocalization of NOS accounts for the reduced NO formation in human umbilical vein endothelial cells treated with hypochlorite-modified LDL and point to an important role of Golgi-located NOS in these processes. We conclude that inhibition of NO synthesis by hypochlorite-modified LDL may be an important mechanism in the development of endothelial dysfunction and early pathogenesis of atherosclerosis.  相似文献   

16.
Within arterial bifurcations or branching points, oscillatory shear stress (OSS) induces oxidative stress mainly via the reduced nicotinamide adenine dinucleodtide phosphate (NADPH) oxidase system. It is unknown whether 17beta-estradiol (E(2)) can regulate OSS-mediated low-density lipoprotein (LDL) modifications. Bovine aortic endothelial cells were pretreated with E(2) at 5 nmol/L, followed by exposure to OSS (0 +/- 3.0 dynes/cm(2) s and 60 cycles/min) in a flow system. E(2) decreased OSS-mediated NADPH oxidase mRNA expression, and E(2)-mediated (.-)NO production was mitigated by the NO synthase inhibitor N(G)-nitro-l-argenine methyl ester. The rates of O(2)(-.) production in response to OSS increased steadily as determined by superoxide-dismutase-inhibited ferricytochrome c reduction; whereas, pretreatment with E(2) decreased OSS-mediated O(2)(-.) production (n = 4, p < 0.05). In the presence of native LDL (50 microg/mL), E(2) also significantly reversed OSS-mediated LDL oxidation as determined by high-performance liquid chromatography. In the presence of O(2)(-.) donor, xanthine oxidase (XO), E(2) further reversed XO-induced LDL lipid peroxidation (n = 3, p < 0.001). Mass spectra acquired in the m/z 400-1800 range, revealed XO-mediated LDL protein nitration involving tyrosine 2535 in the alpha-2 domains, whereas pretreatment with E(2) reversed nitration, as supported by the changes in nitrotyrosine intensities. Thus, E(2) plays an indirect antioxidative role. In addition to upregulation of endothelial (.-)NO synthase and downregulation of Nox4 expression, E(2) influences LDL modifications via lipid peroxidation and protein nitration.  相似文献   

17.
We examined the uptake pathway of acetylated low-density lipoprotein and oxidatively modified LDL (oxidized LDL) in human umbilical vein endothelial cells in culture. Proteolytic degradation of 125I-labeled Ac-LDL or Ox-LDL in the confluent monolayer of human endothelial cells was time-dependent and showed saturation kinetics in the dose-response relationship, which suggests that their incorporation is receptor-mediated. Cross-competition studies between acetylated LDL and oxidized LDL showed that the degradation of 125I-labeled acetylated LDL was almost completely inhibited by excess amount of unlabeled acetylated LDL, while only partially inhibited by excess unlabeled oxidized LDL. On the other hand, the degradation of 125I-labeled oxidized LDL was equally inhibited by excess amount of either acetylated or oxidized LDL. Cross-competition results of the cell-association assay paralleled the results shown in the degradation assay. These data indicate that human endothelial cells do not have any additional receptors specific only for oxidized LDL. On the contrary, they may have additional receptors, as we previously indicated on mouse macrophages, which recognize acetylated LDL, but not oxidized LDL.  相似文献   

18.
Summary Endothelial lesion by oxidized low-density liproproteins (LDL) is one of the first stages in the development of atherosclerosis. The effect of these lipoproteins can range from a functional lesion of the endothelium to death of the endothelial cells by apoptosis. High-density lipoproteins (HDL) are one of the factors which can have a protective effect against the development of atheromatous plaques. The aim of this study is to establish whether the death of endothelial cells by apoptosis induced by oxidized LDLs is prevented by HDLs. ECV304 endothelial cells and bovine aorta endothelial cells were incubated with native LDLs, oxidized LDLs, and a combination of both oxidized LDLs and HDLs. Oxidized LDLs caused a significant increase of mortality mainly by apoptosis. However, when HDLs were added together with oxidized LDLs the percentage of total mortality, the degree of lipoprotein oxidation in the medium, and the percentage of cells in apoptosis were all significantly decreased. HDLs protect against the cytotoxicity of oxidized LDLs possibly by preventing the propagation of the oxidative chain in these lipoproteins.Abbreviations LDL low-density lipoproteins - HDL high-density lipoproteins - BAEC bovine aortic endothelial cell - TBARS thiobarbituric acid-reactive substances  相似文献   

19.
A 14-membered ring macrolide, erythromycin, acts not only as an antibacterial but also as an anti-inflammatory agent. We have previously reported that erythromycin modulates neutrophil functions and ameliorates neutrophil-induced endothelial cell damage through the action of cyclic AMP-dependent protein kinase (PKA) and nitric oxide (NO). We investigated the effect of erythromycin on human endothelial cell functions. Erythromycin enhanced intracellular calcium ion concentration ([Ca2+]i) of endothelial cells and NO release from endothelial cells. The enhancement of NO release from endothelial cells by erythromycin was abolished by addition of EGTA in the medium and was partially reduced by addition of H-89, an inhibitor of PKA. These results suggest that erythromycin enhances NO release from endothelial cells through the action of PKA and [Ca2+]i. In addition, constitutive NO synthase (cNOS) protein expression of endothelial cells was dose-dependently enhanced by treatment with erythromycin, which might also contribute to the enhancement of NO release from endothelial cells by erythromycin. The effect of erythromycin as an anti-inflammatory agent might be partially mediated through the enhancement of NO release from endothelial cells and the drug might be a useful tool for the investigation of cNOS of endothelial cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号